Laboratory Animal and Comparative Medicine, Volume. 45, Issue 3, 309(2025)

Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models

TAN Dengxu1,2, MA Yifan1, LIU Ke1, ZHANG Yanying1, and SHI Changhong2、*
Author Affiliations
  • 1First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
  • 2Laboratory Animal Center, Fourth Military Medical University, Xi'an 710032, China
  • show less
    References(48)

    [1] [1] TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1): 168. DOI: 10.1038/s41392-022-01024-9.

    [2] [2] JEYA VANDANA J, MANRIQUE C, LACKO L A, et al. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation[J]. Cell Stem Cell, 2023, 30(5): 571-591. DOI: 10.1016/j.stem.2023.04.011.

    [3] [3] YANG H, CHENG J H, ZHUANG H, et al. Pharmacogenomic profiling of intra-tumor heterogeneity using a large organoid biobank of liver cancer[J]. Cancer Cell, 2024, 42(4): 535-551.e8. DOI: 10.1016/j.ccell.2024.03.004.

    [4] [4] GAO S T, SHEN J, HORNICEK F, et al. Three-dimensional (3D) culture in sarcoma research and the clinical significance[J]. Biofabrication, 2017, 9(3): 032003. DOI: 10.1088/1758-5090/aa7fdb.

    [5] [5] SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI: 10.1038/nature07935.

    [6] [6] EICHMLLER O L, KNOBLICH J A. Human cerebral organoids - a new tool for clinical neurology research[J]. Nat Rev Neurol, 2022, 18(11): 661-680. DOI: 10.1038/s41582-022-00723-9.

    [7] [7] WANG S Y, WANG X, TAN Z L, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury[J]. Cell Res, 2019, 29(12): 1009-1026. DOI: 10.1038/s41422-019-0242-8.

    [8] [8] LIM K, DONOVAN A P A, TANG W, et al. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease[J]. Cell Stem Cell, 2023, 30(1): 20-37.e9. DOI: 10.1016/j.stem.2022.11.013.

    [9] [9] NISHINAKAMURA R. Advances and challenges toward developing kidney organoids for clinical applications[J]. Cell Stem Cell, 2023, 30(8): 1017-1027. DOI: 10.1016/j.stem.2023.07.011.

    [10] [10] CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7): 1586-1597. DOI: 10.1016/j.cell.2016.05.082.

    [11] [11] EDMONDSON R, BROGLIE J J, ADCOCK A F, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors[J]. Assay Drug Dev Technol, 2014, 12(4): 207-218. DOI: 10.1089/adt.2014.573.

    [12] [12] HOFER M, LUTOLF M P. Engineering organoids[J]. Nat Rev Mater, 2021, 6(5): 402-420. DOI: 10.1038/s41578-021-00279-y.

    [13] [13] KIM J, KOO B K, KNOBLICH J A. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 571-584. DOI: 10.1038/s41580-020-0259-3.

    [14] [14] ANDREWS M G, KRIEGSTEIN A R. Challenges of organoid research[J]. Annu Rev Neurosci, 2022, 45: 23-39. DOI: 10.1146/annurev-neuro-111020-090812.

    [15] [15] BREDENOORD A L, CLEVERS H, KNOBLICH J A. Human tissues in a dish: the research and ethical implications of organoid technology[J]. Science, 2017, 355(6322): eaaf9414. DOI: 10.1126/science.aaf9414.

    [16] [16] ZHOU Z Z, PANG Y, JI J Y, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies[J]. Nat Rev Immunol, 2024, 24(1): 18-32. DOI: 10.1038/s41577-023-00896-4.

    [17] [17] NEAL J T, LI X N, ZHU J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7): 1972-1988.e16. DOI: 10.1016/j.cell.2018.11.021.

    [18] [18] PUSCHHOF J, PLEGUEZUELOS-MANZANO C, MARTINEZ-SILGADO A, et al. Intestinal organoid cocultures with microbes[J]. Nat Protoc, 2021, 16(10): 4633-4649. DOI: 10.1038/s41596-021-00589-z.

    [19] [19] ZHANG J, TAVAKOLI H, MA L, et al. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment[J]. Adv Drug Deliv Rev, 2022, 187: 114365. DOI: 10.1016/j.addr.2022.114365.

    [20] [20] GABBIN B, MERAVIGLIA V, ANGENENT M L, et al. Heart and kidney organoids maintain organ-specific function in a microfluidic system[J]. Mater Today Bio, 2023, 23: 100818. DOI: 10.1016/j.mtbio.2023.100818.

    [21] [21] TUVESON D, CLEVERS H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444): 952-955. DOI: 10.1126/science.aaw6985.

    [22] [22] ATANASOVA V S, DE JESUS CARDONA C, HEJRET V, et al. Mimicking tumor cell heterogeneity of colorectal cancer in a patient-derived organoid-fibroblast model[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(6): 1391-1419. DOI: 10.1016/j.jcmgh.2023.02.014.

    [23] [23] JIANG S W, DENG T W, CHENG H, et al. Macrophage-organoid co-culture model for identifying treatment strategies against macrophage-related gemcitabine resistance[J]. J Exp Clin Cancer Res, 2023, 42(1): 199. DOI: 10.1186/s13046-023-02756-4.

    [24] [24] SCHUTH S, LE BLANC S, KRIEGER T G, et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system[J]. J Exp Clin Cancer Res, 2022, 41(1): 312. DOI: 10.1186/s13046-022-02519-7.

    [25] [25] KIM M B, HWANGBO S, JANG S, et al. Bioengineered co-culture of organoids to recapitulate host-microbe interactions[J]. Mater Today Bio, 2022, 16: 100345. DOI: 10.1016/j.mtbio.2022.100345.

    [26] [26] WILSON S S, TOCCHI A, HOLLY M K, et al. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions[J]. Mucosal Immunol, 2015, 8(2): 352-361. DOI: 10.1038/mi.2014.72.

    [27] [27] HAN Y L, DUAN X H, YANG L L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841): 270-275. DOI: 10.1038/s41586-020-2901-9.

    [28] [28] LI M H, GAO L X, ZHAO L, et al. Toward the next generation of vascularized human neural organoids[J]. Med Res Rev, 2023, 43(1): 31-54. DOI: 10.1002/med.21922.

    [29] [29] HUANG S C, ZHANG Z, CAO J W, et al. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer's tau pathology[J]. Signal Transduct Target Ther, 2022, 7(1): 176. DOI: 10.1038/s41392-022-01006-x.

    [30] [30] MORRONE PARFITT G, COCCIA E, GOLDMAN C, et al. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson's disease model[J]. Nat Commun, 2024, 15(1): 447. DOI: 10.1038/s41467-024-44732-2.

    [31] [31] YANG R X, YU Y Y. Patient-derived organoids in translational oncology and drug screening[J]. Cancer Lett, 2023, 562: 216180. DOI: 10.1016/j.canlet.2023.216180.

    [32] [32] NAKAZAWA Y, MIYANO M, TSUKAMOTO S, et al. Delivery of a BET protein degrader via a CEACAM6-targeted antibody-drug conjugate inhibits tumour growth in pancreatic cancer models[J]. Nat Commun, 2024, 15(1): 2192. DOI: 10.1038/s41467-024-46167-1.

    [33] [33] YU L, LI Z C, MEI H B, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cellsin vitro[J]. Clin Transl Immunology, 2021, 10(2): e1248. DOI: 10.1002/cti2.1248.

    [34] [34] MU P Y, ZHOU S J, LV T, et al. Newly developed 3D in vitro models to study tumor-immune interaction[J]. J Exp Clin Cancer Res, 2023, 42(1): 81. DOI: 10.1186/s13046-023-02653-w.

    [35] [35] SONG T Y, KONG B, LIU R, et al. Bioengineering approaches for the pancreatic tumor organoids research and application[J]. Adv Healthc Mater, 2024, 13(1): 2300984. DOI: 10.1002/adhm.202300984.

    [36] [36] HARTUNG T. Thoughts on limitations of animal models[J]. Parkinsonism Relat Disord, 2008, 14(Suppl 2): S81-S83. DOI: 10.1016/j.parkreldis.2008.04.003.

    [37] [37] DONCHEVA N T, PALASCA O, YARANI R, et al. Human pathways in animal models: possibilities and limitations[J]. Nucleic Acids Res, 2021, 49(4): 1859-1871. DOI: 10.1093/nar/gkab012.

    [38] [38] CORSINI N S, KNOBLICH J A. Human organoids: New strategies and methods for analyzing human development and disease[J]. Cell, 2022, 185(15): 2756-2769. DOI: 10.1016/j.cell.2022.06.051.

    [39] [39] GRIBBEN C, GALANAKIS V, CALDERWOOD A, et al. Acquisition of epithelial plasticity in human chronic liver disease[J]. Nature, 2024, 630(8015): 166-173. DOI: 10.1038/s41586-024-07465-2.

    [40] [40] VITALE S, CALAP F, COLONNA F, et al. Advancements in 3D in vitro models for colorectal cancer[J]. Adv Sci, 2024, 11 (32): e2405084. DOI: 10.1002/advs.202405084.

    [41] [41] JOO H, MIN S, CHO S W. Advanced lung organoids for respiratory system and pulmonary disease modeling[J]. J Tissue Eng, 2024, 15: 20417314241232502. DOI: 10.1177/20417314241232502.

    [42] [42] PALLOCCA G, ROVIDA C, LEIST M. On the usefulness of animals as a model system (part I): Overview of criteria and focus on robustness[J]. ALTEX, 2022, 39(2): 347-353. DOI: 10.14573/altex.2203291.

    [43] [43] ROSSI G, MANFRIN A, LUTOLF M P. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11): 671-687. DOI: 10.1038/s41576-018-0051-9.

    [44] [44] HUANG D Q, WU Z H, WANG J, et al. Biomimetic liver lobules from multi-compartmental microfluidics[J]. Adv Sci, 2024, 11 (42): e2406573. DOI: 10.1002/advs.202406573.

    [45] [45] TAO T T, DENG P W, WANG Y Q, et al. Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes[J]. Adv Sci, 2022, 9(5): e2103495. DOI: 10.1002/advs.202103495.

    [46] [46] WANG H, NING X F, ZHAO F, et al. Human organoids-on-chips for biomedical research and applications[J]. Theranostics, 2024, 14(2): 788-818. DOI: 10.7150/thno.90492.

    [47] [47] LIU B D, ZHU Y T, YANG Z Y, et al. Deep learning-based 3D single-cell imaging analysis pipeline enables quantification of cell-cell interaction dynamics in the tumor microenvironment[J]. Cancer Res, 2024, 84(4): 517-526. DOI: 10.1158/0008-5472.CAN-23-1100.

    [48] [48] VENINGA V, VOEST E E. Tumor organoids: Opportunities and challenges to guide precision medicine[J]. Cancer Cell, 2021, 39(9): 1190-1201. DOI: 10.1016/j.ccell.2021.07.020.

    Tools

    Get Citation

    Copy Citation Text

    TAN Dengxu, MA Yifan, LIU Ke, ZHANG Yanying, SHI Changhong. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models[J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 7, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: SHI Changhong (changhong@fmmu.edu.cn)

    DOI:10.12300/j.issn.1674-5817.2024.164

    Topics