Acta Optica Sinica, Volume. 44, Issue 23, 2312002(2024)

Modeling and Compensation Method of Camera Temperature Drift Effect

Zechun Lin1,2, Huiping Liang1,2, Lihao Liu1,2, Baoqiong Wang1,2, Yi Zhang1,2, Yueqiang Zhang1,2,3、*, Xiaolin Liu1,2, and Qifeng Yu1,2
Author Affiliations
  • 1Key Laboratory of Intelligent Optical Measurement and Detection, Institute of Intelligent Optical Measurement and Detection, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 3Technology Innovation Center of Intelligent Opto-Electronic Sensing for State Market Regulation, Shenzhen 518060, Guangdong , China
  • show less
    Figures & Tables(16)
    Schematic diagrams of image planes before and after translation (dashed quadrilateral represents original image plane, and blue quadrilateral represents image plane after translation)
    Schematic diagrams of image planes before and after rotation (white quadrilateral represents image plane after translation, and gray quadrilateral represents image plane after rotation)
    Diagram of temperature change experimental system
    Relationship among camera internal temperature, temperature control box temperature, indoor temperature, and time
    Relationship between change of each parameter and temperature in experiment 2. (a) du0; (b) dv0; (c) dfu; (d) dfv; (e) α; (f) β; (g) γ
    Relationship between two equivalent focal length changes and camera internal temperature. (a)(b) Experiment 1;
    Regression results of Gaussian processes. (a) du0; (b) dv0; (c) dfu; (d) dfv; (e) α; (f) β; (g) γ
    Histograms of image point drifts before and after compensation of four groups of experiments. (a) Linear regression; (b) neural network; (c) support vector regression; (d) decision tree regression; (e) Gaussian process regression
    Diagram of outdoor experiment system
    Change curves of temperature and image point coordinates with time in outdoor experiment 1
    Displacement error distributions before and after compensation. (a) Experiment 2; (b) experiment 3
    • Table 1. Experimental device and related parameters

      View table

      Table 1. Experimental device and related parameters

      DeviceParameter
      Calibration plateSpecificationGP290‑20‑12×9
      CameraBrand/VersionAVT/GT 2050
      Resolution ratio2048 pixel×2048 pixel
      Pixel size5.5 µm×5.5 µm
      Operating temperature-20‒65 ℃
      LensSpecificationNikon AF Nickel 50mm f/1.8D
      Temperature acquisition instrumentSpecificationRX6000C‑12‑T1‑AS
      Temperature sensorSpecificationMIK‑WZP
      Temperature range-50‒200 ℃
    • Table 2. Temperature change processes of four experiments

      View table

      Table 2. Temperature change processes of four experiments

      Experiment

      Range of

      experiment

      1 /℃

      Rate of

      experiment

      1 /(℃/h)

      Range of

      experiment

      2 /℃

      Rate of

      experiment

      2 /(℃/h)

      Range of

      experiment

      3 /℃

      Rate of

      experiment

      3 /(℃/h)

      Range of

      experiment

      4 /℃

      Rate of

      experiment

      4 /(℃/h)

      145‒156045‒-152045‒-156045‒-1560
      -15‒4560-15‒4520-15‒3560-15‒3560
      245‒-156045‒-154035‒-56035‒-540
      -15‒4560-15‒4540-5‒2560-5‒2540
      345‒-156045‒-156025‒06025‒025
      -15‒4560-15‒45600‒20600‒2025
    • Table 3. Comparison of solution errors of three models

      View table

      Table 3. Comparison of solution errors of three models

      ModelExperiment 1Experiment 2Experiment 3Experiment 4
      Ours4.84×10-24.88×10-25.16×10-24.90×10-2
      Model in Ref. [294.94×10-24.97×10-25.26×10-24.99×10-2
      Model in Ref. [306.45×10-26.80×10-26.55×10-26.39×10-2
    • Table 4. Average residuals of various regression algorithms

      View table

      Table 4. Average residuals of various regression algorithms

      Regression algorithmLinear regressionNeural networkSupport vector regressionDecision tree regressionGaussian process regression
      Mean of residuals /pixel0.440.380.270.220.21
    • Table 5. Comparison of results of two outdoor experiments

      View table

      Table 5. Comparison of results of two outdoor experiments

      Experiment12
      Original displacement /mm10.2910.07
      Residual displacement /mm10.0610.01
      Compensation percentage /%79.3185.71
    Tools

    Get Citation

    Copy Citation Text

    Zechun Lin, Huiping Liang, Lihao Liu, Baoqiong Wang, Yi Zhang, Yueqiang Zhang, Xiaolin Liu, Qifeng Yu. Modeling and Compensation Method of Camera Temperature Drift Effect[J]. Acta Optica Sinica, 2024, 44(23): 2312002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 5, 2024

    Accepted: Aug. 22, 2024

    Published Online: Dec. 17, 2024

    The Author Email: Zhang Yueqiang (yueqiang.zhang@szu.edu.cn)

    DOI:10.3788/AOS241254

    CSTR:32393.14.AOS241254

    Topics