Laser Technology, Volume. 45, Issue 2, 218(2021)

Optimal design of composite Nd∶YAG/Cr4+∶YAG passive Q-switched microchip laser

LIU Ruike1, WANG Chaochen1, NIU Changdong1, JIN Duo1, BAI Zhenxu1,2, WANG Yulei1,2, and L Zhiwe1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(25)

    [1] [1] WU P, FAN Y R, GUO J W, et al. High reflectivity aluminum film processed by nanosecond pulse lser[J]. Laser Technology, 2019, 43(6): 779-783 (in Chinese).

    [2] [2] HUO X W, QI Y Y, LI Y Q, et al. Research progress of LD-pumped Pr3+ -doped solid-state laser in visible wavelength[J]. Electro-Optic Technology Application, 2019, 34(5): 7-15 (in Chinese).

    [3] [3] TU Sh, CAO S S, TIAN L J, et al. A thermphysical model for slab solid-state lasers[J]. Laser Technolgy, 2019, 43(3): 314-317 (in Chinese).

    [4] [4] ZAYHOWSKI J J, MOORADIAN A. Microchip lasers[J]. Optical Materials, 1989, 11(2):427-446.

    [5] [5] TAIRA T. Domain-controlled laser ceramic toward giant micro-photonics[J]. Optical Materials Epress, 2011, 1(5):1040-1050.

    [6] [6] TSUNEKANE M, TAIRA T. High peak power, passively Q-switched Yb∶YAG/Cr∶YAG micro-lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(5):454-461.

    [7] [7] DONG J, WANG G Y, REN Y Y. Advances in passively Q-switched solid-state lasers based on composite materials[J]. Chinese Journal of Lasers, 2013, 40(6): 0601003 (in Chinese).

    [8] [8] GUO X Y, TOKITA S, KAWANAKA J. 12mJ Yb∶YAG/Cr∶YAG microchip laser[J]. Optics Letters, 2018, 43(3):459-461.

    [9] [9] ZHAN Y, WANG L, WANG J Y, et al. Yb∶YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber[J]. Laser Physics, 2015, 25(2): 1-4.

    [10] [10] BHANDARI R, TAIRA T. >6MW peak power at 532nm from passively Q-switched Nd∶YAG/Cr4+∶YAG microchip laser[J]. Optics Express, 2011, 19(20):19135-19141.

    [11] [11] YIN X, MENG J Q, ZU J F, et al. Semiconductor saturable-absorber mirror passively Q-switched Yb∶YAG microchip laser[J]. Chinese Optics Letters, 2013, 11(8):47-49.

    [12] [12] FENG Y, LU J R, TAKAICHI K, et al. Passively Q-switched ceramic Nd3+∶YAG/Cr4+∶YAG lasers[J]. Applied Optics, 2004, 43(14):2944-2947.

    [13] [13] LI X D, ZHOU Y P, YAN R P, et al. A compact pulse burst laser with YAG/Nd∶YAG/Cr4+∶YAG composite crystal[J]. Optik, 2017, 136:107-111.

    [14] [14] LI P, SONG T, BAI J X, et al. Research of multi-pulses emission in passively Q-switched Nd3+∶YAG microchip laser[J]. Optik, 2017, 132:39-45.

    [15] [15] ZHOU J Y, DONG J, CHENG Y, et al. Efficient, nanosecond self-Q-switched Cr, Yb∶YAG lasers by bonding Yb∶YAG crystal[J]. Laser Physics Letters, 2011, 8(8):591-597.

    [16] [16] DONG J, MA J, REN Y Y, et al. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd∶YAG microchip lasers[J]. Laser Physics Letters, 2013, 10(8):1-6.

    [17] [17] DONG J, HE Y, ZHOU X, et al. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping[J]. Quantum Electronics, 2016, 46(3):218-222.

    [18] [18] DONG J, DENG P Z, LU Y T, et al. Laser-diode-pμmped Cr4+, Nd3+∶YAG with self-Q-switched laser output of 1.4 W[J]. Optics Letters, 2000, 25(15):1101-1103.

    [19] [19] JAZI M E, BAGHI M D, et al. Pulsed Nd∶YAG passive Q-switched laser using Cr4+∶YAG crystal[J]. Optics and Laser Technology, 2012, 44(3):522-527.

    [20] [20] WANG H X, YANG X Q, ZHAO S, et al. 2ns-pulse, compact and reliable microchip lasers by Nd∶YAG/Cr4+∶YAG composite crystal[J]. Laser Physics, 2009, 19(8):1824-1827.

    [21] [21] FU S G, OUYANG X Y, LIU X J. Passively Q-switched Nd∶YAG/Cr4+∶YAG bonded crystal microchip laser operating at 1112nm and its application for second-harmonic generation[J]. Applied Optics, 2015, 54(29):8804-8807.

    [22] [22] DEGNAN J J. Optimization of passively Q-switched lasers[J]. IEEE Journal of Quantum Electronics, 1995, 31(11):1890-1901.

    [23] [23] DEGNAN J J. Theory of the optimally coupled Q-switched laser[J]. IEEE Journal of Quantum Electronics, 1989, 25(2):214-220.

    [24] [24] BURSHTEIN Z, BLAU P, KALISKY Y, et al. Excited-state absorption studies of Cr4+ ions in several garnet host crystals[J]. IEEE Journal of Quantum Electronics, 1998, 34(2):292-299.

    [25] [25] KOECHNER W. Solid-state laser engineering[M]. Beijing: World Book Publishing Company, 2005:40-41(in Chinese).

    CLP Journals

    [1] SUN Xiaohui, SONG Haipeng, YE Shuai, NIE Hongkun, HE Jingliang, ZHANG Baitao. Miniatured Sub-nanosecond YAG/Nd:YAG/Cr4+:YAG Microchip Laser[J]. Electro-Optic Technology Application, 2022, 28(6): 38

    Tools

    Get Citation

    Copy Citation Text

    LIU Ruike, WANG Chaochen, NIU Changdong, JIN Duo, BAI Zhenxu, WANG Yulei, L Zhiwe. Optimal design of composite Nd∶YAG/Cr4+∶YAG passive Q-switched microchip laser[J]. Laser Technology, 2021, 45(2): 218

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 24, 2020

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: L Zhiwe (zw_lu@sohu.com)

    DOI:10-7510/jgjs-issn-1001-3806-2021-02-016

    Topics