Chinese Journal of Lasers, Volume. 49, Issue 12, 1201002(2022)

Progress in Kerr-lens Mode-Locked Thin Disk Laser oscillators

Jingjie Hao1, Heyan Liu1, Hongshan Chen1, Tingting Yang1, Hailin Wang1, Guangzhi Zhu1, Xiao Zhu1,2, and Jinwei Zhang1,2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • show less
    References(53)

    [1] Giesen A, Hügel H, Voss A et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 58, 365-372(1994).

    [3] Emaury F, Diebold A, Saraceno C J et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator[J]. Optica, 2, 980-984(2015).

    [4] Pupeza I, Sánchez D, Zhang J W et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 9, 721-724(2015).

    [5] Zhang J W, Fritsch K, Wang Q et al. Intra-pulse difference-frequency generation of mid-infrared (2.7-20 μm) by random quasi-phase-matching[J]. Optics Letters, 44, 2986-2989(2019).

    [6] Zhang J W, Mak K F, Nagl N et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 cm-1 to 2250 cm-1[J]. Light: Science & Applications, 7, 17180(2018).

    [7] Meyer F, Hekmat N, Vogel T et al. Milliwatt-class broadband THz source driven by a 112 W, sub-100 fs thin-disk laser[J]. Optics Express, 27, 30340-30349(2019).

    [8] Meyer F, Vogel T, Ahmed S et al. Single-cycle, MHz repetition rate THz source with 66 mW of average power[J]. Optics Letters, 45, 2494-2497(2020).

    [9] Huang Y, Zhu X, Zhu G Z et al. A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability[J]. Optics Express, 23, 4605-4613(2015).

    [10] Li Z Y, Zou H, Zhu G Z et al. Dynamic compensation of the fundamental mode of thin disk laser resonators based on a deformable mirror[J]. Acta Optica Sinica, 42, 0814002(2021).

    [11] der Au J A A, Spühler G J, Südmeyer T et al. 16.2-W average power from a diode-pumped femtosecond Yb∶YAG thin disk laser[J]. Optics Letters, 25, 859-861(2000).

    [12] Pronin O, Brons J, Grasse C et al. High-power 200 fs Kerr-lens mode-locked Yb∶YAG thin-disk oscillator[J]. Optics Letters, 36, 4746-4748(2011).

    [13] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 42-44(1991).

    [14] Boyd R W[M]. Nonlinear optics(2020).

    [15] Parshani I, Bello L, Meller M E et al. Diffractive saturable loss mechanism in Kerr-lens mode-locked lasers: direct observation and simulation[J]. Optics Letters, 46, 1530-1533(2021).

    [16] Bauer D, Zawischa I, Sutter D H et al. Mode-locked Yb∶YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion[J]. Optics Express, 20, 9698-9704(2012).

    [17] Poetzlberger M, Zhang J W, Gröbmeyer S et al. Kerr-lens mode-locked thin-disk oscillator with 50% output coupling rate[J]. Optics Letters, 44, 4227-4230(2019).

    [18] Brons J, Pervak V, Fedulova E et al. Energy scaling of Kerr-lens mode-locked thin-disk oscillators[J]. Optics Letters, 39, 6442-6445(2014).

    [19] Brons J, Pervak V, Bauer D et al. Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator[J]. Optics Letters, 41, 3567-3570(2016).

    [20] Brunner F, Südmeyer T, Innerhofer E et al. 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb∶KY(WO4)2 laser[J]. Optics Letters, 27, 1162-1164(2002).

    [21] Saraceno C J, Heckl O H, Baer C R E et al. Sub-100 femtosecond pulses from an SESAM modelocked thin disk laser[J]. Applied Physics B, 106, 559-562(2012).

    [22] Kreipe B, de Andrade J R C, Kränkel C et al. Kerr-lens mode-locked Yb3+∶Lu2O3 thin-disk laser[C], 16553686(2016).

    [23] Paradis C, Modsching N, Wittwer V J et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 25, 14918-14925(2017).

    [24] Kitajima S, Shirakawa A, Yagi H et al. Sub-100 fs pulse generation from a Kerr-lens mode-locked Yb∶Lu2O3 ceramic thin-disk laser[J]. Optics Letters, 43, 5451-5454(2018).

    [25] Kitajima S, Shirakawa A, Yagi H et al. Kerr-lens mode-locked Yb∶LuAG ceramic thin-disk laser[J]. Optics Letters, 46, 2312-2315(2021).

    [26] Marchese S V, Baer C R E, Peters R et al. Efficient femtosecond high power Yb∶Lu2O3 thin disk laser[J]. Optics Express, 15, 16966-16971(2007).

    [27] Dannecker B, Beirow F, Weichelt B et al. SESAM mode-locked Yb∶YAB thin-disk oscillator delivering an average power of 19 W[J]. Optics Letters, 46, 912-915(2021).

    [28] Dannecker B, Ahmed M A, Graf T. SESAM-modelocked Yb∶CaF2 thin-disk-laser generating 285 fs pulses with 1.78 μJ of pulse energy[J]. Laser Physics Letters, 13, 055801(2016).

    [29] Diebold A, Emaury F, Schriber C et al. SESAM mode-locked Yb∶CaGdAlO4 thin disk laser with 62 fs pulse generation[J]. Optics Letters, 38, 3842-3845(2013).

    [30] Modsching N, Drs J, Fischer J et al. Sub-100-fs Kerr lens mode-locked Yb∶Lu2O3 thin-disk laser oscillator operating at 21 W average power[J]. Optics Express, 27, 16111-16120(2019).

    [31] Modsching N, Paradis C, Labaye F et al. Kerr lens mode-locked Yb∶CALGO thin-disk laser[J]. Optics Letters, 43, 879-882(2018).

    [32] Haus H A. Theory of mode locking with a fast saturable absorber[J]. Journal of Applied Physics, 46, 3049-3058(1975).

    [33] Zhang J W, Pötzlberger M, Wang Q et al. Distributed Kerr lens mode-locked Yb∶YAG thin-disk oscillator[J]. Ultrafast Science, 2022, 9837892(2022).

    [34] Drs J, Fischer J, Modsching N et al. Sub-30-fs Yb∶YAG thin-disk laser oscillator operating in the strongly self-phase modulation broadened regime[J]. Optics Express, 29, 35929-35937(2021).

    [35] Fischer J, Drs J, Modsching N et al. Efficient 100-MW, 100-W, 50-fs-class Yb∶YAG thin-disk laser oscillator[J]. Optics Express, 29, 42075-42081(2021).

    [36] Zhang J W, Brons J, Lilienfein N et al. 260-megahertz, megawatt-level thin-disk oscillator[J]. Optics Letters, 40, 1627-1630(2015).

    [37] Eilanlou A A, Broderick N G R. A thin-disk ring laser oscillator at a repetition rate beyond 120 MHz[J]. Optics Communications, 501, 127349(2021).

    [38] Speiser J, Renz G, Giesen A. Thin disk laser in the 2 μm wavelength range[J]. Proceedings of SPIE, 8547, 85470E(2012).

    [39] Vatnik S, Vedin I, Segura M et al. Efficient thin-disk Tm-laser operation based on Tm∶KLu(WO4)2/KLu(WO4)2 epitaxies[J]. Optics Letters, 37, 356-358(2012).

    [40] Zhang J W, Schulze F, Mak K F et al. High-power, high-efficiency Tm∶YAG and Ho∶YAG thin-disk lasers[J]. Laser & Photonics Reviews, 12, 1700273(2018).

    [41] Song E M, Zhu G Z, Wang H L et al. Up conversion and excited state absorption analysis in the Tm∶YAG disk laser multi-pass pumped by 1 μm laser[J]. High Power Laser Science and Engineering, 9, e8(2021).

    [42] Schellhorn M. Performance of a Ho∶YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser[J]. Applied Physics B, 85, 549-552(2006).

    [43] Zhang J W, Mak K F, Pronin O. Kerr-lens mode-locked 2-μm thin-disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 17662497(2018).

    [44] Tomilov S, Vogel T, Hoffmann M et al. 100 W-class 2 μm Ho∶YAG thin-disk laser[C], SM3E.1(2020).

    [45] Suomalainen S, Härkönen A, Guina M et al. Highly-efficient Ho∶KY(WO4)2 thin-disk lasers at 2.06 μm[J]. Proceedings of SPIE, 10713, 107130J(2018).

    [46] Tomilov S, Hoffmann M, Heidrich J et al. High-power SESAM-modelocked Ho∶YAG laser at 2090 nm[C], ATu3A.3(2021).

    [47] Ishii N, Xia P Y, Kanai T et al. Optical parametric amplification of carrier-envelope phase-stabilized mid-infrared pulses generated by intra-pulse difference frequency generation[J]. Optics Express, 27, 11447-11454(2019).

    [48] Fattahi H, Schwarz A, Geng X T et al. Decoupling chaotic amplification and nonlinear phase in high-energy thin-disk amplifiers for stable OPCPA pumping[J]. Optics Express, 22, 31440-31447(2014).

    [49] Fattahi H, Alismail A, Wang H C et al. High-power, 1-ps, all-Yb∶YAG thin-disk regenerative amplifier[J]. Optics Letters, 41, 1126-1129(2016).

    [50] Nubbemeyer T, Kaumanns M, Ueffing M et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017).

    [51] Südmeyer T, Marchese S V, Hashimoto S et al. Femtosecond laser oscillators for high-field science[J]. Nature Photonics, 2, 599-604(2008).

    [52] Südmeyer T, Marchese S V, Baer C R E et al. Femtosecond thin disk lasers with >10 μJ pulse energy for high field physics at multi-megahertz repetition rates[M]. Corkum P, Silvestri S, Nelson K A, et al. Ultrafast phenomena XVI. Springer series in chemical physics, 92, 747-749(2009).

    [53] Guo B S, Sun J Y, Hua Y H et al. Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications[J]. Nanomanufacturing and Metrology, 3, 26-67(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jingjie Hao, Heyan Liu, Hongshan Chen, Tingting Yang, Hailin Wang, Guangzhi Zhu, Xiao Zhu, Jinwei Zhang. Progress in Kerr-lens Mode-Locked Thin Disk Laser oscillators[J]. Chinese Journal of Lasers, 2022, 49(12): 1201002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jan. 11, 2022

    Accepted: Mar. 1, 2022

    Published Online: Jun. 13, 2022

    The Author Email: Jinwei Zhang (jinweizhang@hust.edu.cn)

    DOI:10.3788/CJL202249.1201002

    Topics