Chinese Journal of Lasers, Volume. 48, Issue 4, 0401003(2021)

Review of Coherent Laser Beam Combining Research Progress in the Past Decade

Pu Zhou*, Rongtao Su, Yanxing Ma, Pengfei Ma, Jian Wu, Can Li, and Man Jiang
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    References(269)

    [2] McNaught S J, Asman C P, Injeyan H et al. 100-kW coherently combined Nd∶YAG MOPA laser array. [C]∥Frontiers in Optics 2009, FThD2(2009).

    [4] Brignon A. Coherent laser beam combining[M]. Weinheim: John Wiley & Sons Ltd.(2013).

    [5] Liu Z J, Zhou P, Xu X J et al[M]. Coherent beam combining of high average power fiber lasers(2016).

    [6] Cheng Y[M]. Coherent combining of solid laser(2016).

    [7] Danson C N, Haefner C, Bromage J et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, 172-225(2019).

    [11] Kong H J, Park S, Cha S et al. Conceptual design of the Kumgang laser: a high-power coherent beam combination laser using SC-SBS-PCMs towards a dream laser[J]. High Power Laser Science and Engineering, 3, e1(2015).

    [12] Liu Z J, Jin X X, Su R T et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 62, 041301(2019).

    [13] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [14] Zhu J J, Zhou P, Ma Y X et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).

    [15] Otto H J, Jauregui C, Limpert J et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[J]. Proceedings of SPIE, 9728, 97280E(2016).

    [17] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb 3+-doped high-power fiber amplifiers[J]. Optics Express, 27, 19019-19041(2019).

    [25] IPG Photonics Corporation. YLS-ECO[2020-10-03]. 1--10 kW ytterbium CW laser systems [2020-10-03].https:∥www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers/1-micron/yls-eco-1-10-kw..

    [26] IPG Photonics Corporation[2020-10-03]. The world's smallest kW-class fiber lasers [2020-10-03].https:∥www.ipgphotonics.com/en/products/lasers/mid-power-cw-fiber-lasers/1-micron/ylr-u-series..

    [28] Su R T, Zhou P, Wang X L et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array[J]. Optics Letters, 37, 3978-3980(2012).

    [31] Lombard L, Azarian A, Cadoret K et al. Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime[J]. Optics Letters, 36, 523-525(2011).

    [32] Zhou P, Wang X L, Ma Y X et al. Active and passive coherent beam combining of thulium-doped fiber lasers[J]. Proceedings of SPIE, 7843, 784307(2010).

    [33] Goodno G D, Komine H. McNaught S J, et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 31, 1247-1249(2006).

    [35] Marmo J, Injeyan H, Komine H et al. Joint high power solid state laser program advancements at Northrop Grumman[J]. Proceedings of SPIE, 7195, 719507(2009).

    [38] Guo Y D, Peng Q J, Bo Y et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd∶YAG slab laser based on a stable-unstable hybrid cavity[J]. Optics Letters, 45, 1136-1139(2020).

    [49] Levy J L, Roh K. Coherent array of 900 semiconductor laser amplifiers[J]. Proceedings of SPIE, 2382, 58-69(1995).

    [57] Huang R K, Chann B, Glenn J D. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser[J]. Proceedings of SPIE, 7918, 791810(2011).

    [61] Li J F, Duan K L, Wang Y S et al. High-power coherent beam combining of two photonic crystal fiber lasers[J]. IEEE Photonics Technology Letters, 20, 888-890(2008).

    [63] Huo Y M, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 12, 6230-6239(2004).

    [64] Michaille L, Taylor D M, Bennett C R et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Optics Letters, 33, 71-73(2008).

    [65] Bruesselbach H, Jones D C, Mangir M S et al. Self-organized coherence in fiber laser arrays[J]. Optics Letters, 30, 1339-1341(2005).

    [66] Wang B S, Mies E, Minden M et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 34, 863-865(2009).

    [67] Zhou P, Wang X L, Ma Y X et al. Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array[J]. Optics Letters, 35, 950-952(2010).

    [68] Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination: a passive technique for laser power scaling[J]. Optics Letters, 35, 1082-1084(2010).

    [69] Park S, Cha S, Oh J et al. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation[J]. Optics Express, 24, 8641-8646(2016).

    [71] Xiao R, Hou J, Liu M et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Optics Express, 16, 2015-2022(2008).

    [72] Müller M, Klenke A, Stark H et al. 16 channel coherently-combined ultrafast fiber laser. [C]∥Advanced Solid State Lasers 2017, AW4A, 3(2017).

    [73] Klenke A, Seise E, Demmler S et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Optics Express, 19, 24280-24285(2011).

    [74] Bourderionnet J, Bellanger C, Primot J et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 19, 17053-17058(2011).

    [76] Kabeya D, Kermene V, Fabert M et al. Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop[J]. Optics Express, 23, 31059-31068(2015).

    [78] Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).

    [81] Ma Y X, Zhou P, Wang X L et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 35, 1308-1310(2010).

    [83] Weyrauch T, Vorontsov M, Mangano J et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 41, 840-843(2016).

    [84] Vorontsov M A, Weyrauch T. High-power lasers for directed-energy applications: comment[J]. Applied Optics, 55, 9950-9953(2016).

    [85] Su R, Xi J, Chang H et al. Coherent combing of 60 fiber lasers using stochastic parallel gradient descent algorithm. [C]∥Applications of Lasers for Sensing and Free Space Communications 2019, JW2A, 1(2019).

    [88] Flores A. Coherent beam combining of fiber amplifiers in a kW regime. [C]∥Conference on Lasers and Electro-Optics(2011).

    [90] Müller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 43, 6037-6040(2018).

    [92] Ma Y, Wang X, Leng J et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 36, 951-953(2011).

    [94] Huang Z M, Tang X, Luo Y Q et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. The Review of Scientific Instruments, 87, 033109(2016).

    [96] Kabeya D, Kermène V, Fabert M et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 25, 13816-13821(2017).

    [101] Hou T Y, An Y, Chang Q et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).

    [103] Liu R Q, Peng C, Wu W S et al. Coherent beam combination of multiple beams based on near-field angle modulation[J]. Optics Express, 26, 2045-2053(2018).

    [105] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 27, 24223-24230(2019).

    [108] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 23, 12407-12413(2015).

    [110] Beresnev L A, Vorontsov M A. Design of adaptive fiber optics collimator for free-space communication laser transceiver[J]. Proceedings of SPIE, 5895, 58950R(2005).

    [111] Weyrauch T, Vorontsov M A, Carhart G W et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011).

    [120] Yang Y, Geng C, Li F et al. Coherent polarization beam combining approach based on polarization controlling in fiber devices[J]. IEEE Photonics Technology Letters, 29, 945-948(2017).

    [127] Goodno G D. McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 35, 1542-1544(2010).

    [129] Su R T, Liu Y K, Yang B L et al. Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm[J]. Journal of Optics, 19, 045802(2017).

    [130] Goodno G D. McNaught S J, Weber M E, et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letters, 37, 4272-4274(2012).

    [132] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 18, 25403-25414(2010).

    [133] Benjamin Weiss S, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Optics Letters, 37, 455-457(2012).

    [134] Klenke A, Seise E, Limpert J et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Optics Express, 19, 25379-25387(2011).

    [141] Injeyan H, Goodno G, Palese S. High power laser handbook[M]. New York: McGraw-Hill(2011).

    [142] Ma P F. Study on coherent polarization beam combining system of high power fiber lasers[D]. Changsha: National University of Defense Technology(2016).

    [143] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 34, A7-A14(2017).

    [145] Jauregui C, Stihler C, Limpert J et al. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [147] Injeyan H, Goodno G, Komine H et al. High power scalable Nd∶YAG laser architecture[C]∥Conference on Lasers and Electro-Optics, 2005, May 22-27, 2005, Baltimore, MD, USA., CMJ3(2005).

    [148] Su R T, Yang B L, Xi X M et al. 500 W level MOPA laser with switchable output modes based on active control[J]. Optics Express, 25, 23275-23282(2017).

    [149] Liu T, Chen S P, Qi X et al. High-power transverse-mode-switchable all-fiber picosecond MOPA[J]. Optics Express, 24, 27821-27827(2016).

    [152] Uberna R, Bratcher A, Alley T G et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 18, 13547-13553(2010).

    [154] Redmond S M, Ripin D J, Yu C X et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 37, 2832-2834(2012).

    [162] Bloom G, Larat C, Lallier E et al. Passive coherent beam combining of quantum-cascade lasers with a Dammann grating[J]. Optics Letters, 36, 3810-3812(2011).

    [163] Redmond S M, Creedon K J, Kansky J E et al. Active coherent beam combining of diode lasers[J]. Optics Letters, 36, 999-1001(2011).

    [164] Phua P B. High power coherent polarization locked laser diode[J]. Optics Express, 19, 5364-5370(2011).

    [166] Creedon K J, Redmond S M, Smith G M et al. High efficiency coherent beam combining of semiconductor optical amplifiers[J]. Optics Letters, 37, 5006-5008(2012).

    [168] Zhao Y S, Zhu L. Improved beam quality of coherently combined angled-grating broad-area lasers[J]. IEEE Photonics Journal, 5, 1500307(2013).

    [173] Albrodt P, Niemeyer M, Crump P et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 27, 27891-27901(2019).

    [177] Kong H J, Park S, Cha S et al. 4 kW coherent beam combination laser using self-controlled stimulated Brillouin scattering-phase conjugation mirrors for industrial applications. [C]∥Advanced Solid-State Lasers Congress, JTh2A, 65(2013).

    [179] Peng C, Liang X Y, Liu R Q et al. Two-beam coherent combining based on Ti: sapphire chirped-pulse amplification at the repetition of 1 Hz[J]. Optics Letters, 44, 4379-4382(2019).

    [182] Liu J, Zeng Z N, Liang X Y, ultraintense lasers et al. 2. 2(03), 22, 42-48(2020).

    [184] Chang H, Chang Q, Hou T et al. Coherent beam combining of 107 fiber lasers. [C]∥Advanced Solid State Lasers(2020).

    [185] Ma Y X, Zhou P, Wang X L et al. Coherent beam combination of two thulium-doped fiber laser beams with the multi-ditheringtechnique[J]. Optics & Laser Technology, 43, 721-724(2011).

    [188] Gaida C, Kienel M, Müller M et al. Coherent combination of two Tm-doped fiber amplifiers[J]. Optics Letters, 40, 2301-2304(2015).

    [189] Oermann M R, Carmody N, Hemming A et al. Coherent beam combination of four holmium amplifiers with phase control via a direct digital synthesizer chip[J]. Optics Express, 26, 6715-6723(2018).

    [190] Wang X, Jin X X, Wu W J et al. 310-W single frequency Tm-doped all-fiber MOPA[J]. IEEE Photonics Technology Letters, 27, 677-680(2015).

    [191] Hemming A, Simakov N, Davidson A et al. A monolithic cladding pumped holmium-doped fibre laser. [C]∥CLEO: Science and Innovations, CW1M, 1(2013).

    [194] Daniault L, Hanna M, Lombard L et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 36, 621-623(2011).

    [198] Yu H L. Study on high power femtosecond fiber lasers and their coherent beam combining technology[D]. Changsha: National University of Defense Technology(2016).

    [199] Yang K W, Zhu G S, Hao Q et al. Coherent polarization beam combination by microcontroller-based phase-locking method[J]. IEEE Photonics Technology Letters, 28, 2129-2132(2016).

    [200] Mu J, Li Z L, Jing F et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Optics Letters, 41, 234-237(2016).

    [202] Hanna M, Guichard F, Zaouter Y et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 062004(2016).

    [203] Limpert J, Klenke A, Kienel M et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 268-277(2014).

    [208] Astrauskas I, Kaksis E, Flöry T et al. High-energy pulse stacking via regenerative pulse-burst amplification[J]. Optics Letters, 42, 2201-2204(2017).

    [209] Zhou T, Ruppe J, Zhu C et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 23, 7442-7462(2015).

    [210] Pei H Z, Ruppe J, Chen S Y et al. 10 mJ energy extraction from Yb-doped 85 μm core CCC fiber using coherent pulse stacking amplification of fs pulses. [C]∥Advanced Solid State Lasers 2017, AW4A, 4(2017).

    [211] Limpert J. Coherent temporal pulse-stacking approaches for peak-power scaling of ultrafast laser systems. [C]∥High-Brightness Sources and Light-Driven Interactions, HM8B, 1(2016).

    [214] Chang W Z, Zhou T, Siiman L A et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 21, 3897-3910(2013).

    [217] Cox J A, Putnam W P, Sell A et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Optics Letters, 37, 3579-3581(2012).

    [221] Durécu A, Canat G, Le Gouët J et al. Coherent combining of SHG converters. [C]∥CLEO: Applications and Technology 2014, JTh2A, 19(2014).

    [224] Gapontsev V, Avdokhin A, Kadwani P et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 8964, 896407(2014).

    [225] Nikitin D G, Byalkovskiy O A, Vershinin O I et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 41, 1660-1663(2016).

    [226] Cole B, Goldberg L, Chinn S et al. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm: YAP laser[J]. Optics Letters, 43, 1099-1102(2018).

    [231] Taylor L R, Feng Y, Calia D B. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8555(2010).

    [233] Lombard L, Valla M, Planchat C et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics Letters, 40, 1030-1033(2015).

    [234] Zhao J L, application[J]. Acta Optica Sinica. 3. 6(10), 36, 1026000(2016).

    [237] Ma P F, Zhou P, Ma Y X et al. Generation of azimuthally and radially polarized beams by coherent polarization beam combination[J]. Optics Letters, 37, 2658-2660(2012).

    [241] Hou T Y, Zhang Y Q, Chang Q et al. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane[J]. Optics Express, 27, 4046-4059(2019).

    [243] Zhi D, Hou T Y, Ma P F et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology[J]. High Power Laser Science and Engineering, 7, e33(2019).

    [249] Geisler D J, Yarnall T M, Stevens M L et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 24, 12661-12671(2016).

    [250] Yang Y, Geng C, Li F et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 25, 27519-27532(2017).

    [255] Moses E I. The national ignition facility and the promise of inertial fusion energy[J]. Fusion Science and Technology, 60, 11-16(2011).

    [261] Soulard R, Quinn M N, Mourou G. Design and properties of a coherent amplifying network laser[J]. Applied Optics, 54, 4640-4645(2015).

    [263] Luu-Thanh P, Tuckmantel T, Pukhov A et al. Laser fields in dynamically ionized plasma structures for coherent acceleration[J]. The European Physical Journal Special Topics, 224, 2625-2629(2015).

    Tools

    Get Citation

    Copy Citation Text

    Pu Zhou, Rongtao Su, Yanxing Ma, Pengfei Ma, Jian Wu, Can Li, Man Jiang. Review of Coherent Laser Beam Combining Research Progress in the Past Decade[J]. Chinese Journal of Lasers, 2021, 48(4): 0401003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Oct. 15, 2020

    Accepted: Jan. 18, 2021

    Published Online: Feb. 24, 2021

    The Author Email: Zhou Pu (zhoupu203@163.com)

    DOI:10.3788/CJL202148.0401003

    Topics