Journal of Functional Materials and Devices, Volume. 31, Issue 4, 283(2025)

Application of organic electrochemical transistors based on mixed ionic electrolytes in neural synaptic simulation

QI Haorong and ZHANG Bei*
Author Affiliations
  • School of Physics and Technology, Xinjiang University, Urumqi 830046, China
  • show less
    References(19)

    [1] [1] FULLER E J, KEENE S T, MELIANAS A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing[J]. Science, 2019, 364(6440): 570-574.

    [2] [2] PARK S M, WON Y, OH J H, et al. Enhancement of synaptic behavior in organic electrochemical transistors via the introduction of layer-by-layer grown metal-organic framework[J]. Advanced Materials Technologies, 2025, 10(6): 2401316.

    [3] [3] XIA Q, YANG J J. Memristive crossbar arrays for brain-inspired computing[J]. Nature Materials, 2019, 18(4): 309-323.

    [4] [4] KUDITHIPUDI D, SCHUMAN C, VINEYARD C M, et al. Neuromorphic computing at scale[J]. Nature, 2025, 637 (8047): 801-812.

    [6] [6] GKOUPIDENIS P, KOUTSOURAS D A, MALLIARAS G G. Neuromorphic device architectures with global connectivity through electrolyte gating[J]. Nature Communications, 2017, 8: 15448.

    [9] [9] ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617.

    [10] [10] KIM K, CHEN C L, TRUONG Q, et al. A carbon nanotube synapse with dynamic logic and learning[J]. Advanced Materials, 2013, 25(12): 1693-1698.

    [12] [12] JI X, PAULSEN B D, CHIK G K K, et al. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor[J]. Nature communications, 2021, 12: 2480.

    [13] [13] CHOI Y, HO D H, KIM S, et al. Physically defined long-term and short-term synapses for the development of reconfigurable analog-type operators capable of performing health care tasks[J]. Science Advances, 2023, 9(27): eadg5946.

    [14] [14] QUILL T J, LECROY G, MELIANAS A, et al. Ion pair uptake in ion gel devices based on organic mixed ionic-electronic conductors[J]. Advanced Functional Materials, 2021, 31(47): 2104301.

    [15] [15] CHEN P Y, PENG X, YU S. NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures[C]//Proceedings of the 2017 IEEE International Electron Devices Meeting. New York: IEEE, 2017: 6.1.1-6.1.4.

    [16] [16] SUNG M J, SEO D G, KIM J, et al. Overcoming the trade-off between efficient electrochemical doping and high state retention in electrolyte-gated organic synaptic transistors[J]. Advanced Functional Materials, 2024, 34(14): 2312546.

    [17] [17] MOUSAVI M P S, WILSON B E, KASHEFOLGHETA S, et al. Ionic liquids as electrolytes for electrochemical double-layer capacitors: structures that optimize specific energy[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3396-3406.

    [18] [18] YANG A, SONG J, LIU H, et al. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart[J]. Advanced Functional Materials, 2023, 33(17): 2215037.

    [19] [19] LEE H, CHO J, JIN M, et al. Electrochemical analysis of ion effects on electrolyte-gated synaptic transistor characteristics[J]. ACS Nano, 2024, 18(7): 5383-5395.

    [20] [20] ALCAM P, PEREDA A E. Beyond plasticity: the dynamic impact of electrical synapses on neural circuits[J]. Nature Reviews Neuroscience, 2019, 20(5): 253-271.

    [21] [21] ZUCKER R S, REGEHR W G. Short-term synaptic plasticity[J]. Annual Review of Physiology, 2002, 64(1): 355-405.

    [22] [22] YU F, ZHU L Q, XIAO H, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and Pavlovian associative learning activities[J]. Advanced Functional Materials, 2018, 28(44): 1804025.

    [23] [23] KIM M K, LEE J S. Ferroelectric analog synaptic transistors[J]. Nano Letters, 2019, 19(3): 2044-2050.

    Tools

    Get Citation

    Copy Citation Text

    QI Haorong, ZHANG Bei. Application of organic electrochemical transistors based on mixed ionic electrolytes in neural synaptic simulation[J]. Journal of Functional Materials and Devices, 2025, 31(4): 283

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 13, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email: ZHANG Bei (zhb@xju.edu.cn)

    DOI:10.20027/j.gncq.2025.0029

    Topics