Chinese Journal of Lasers, Volume. 48, Issue 4, 0401011(2021)

Vaccum Optical Tweezers System and its Research Progress in Precision Measurement

Xiang Han, Xinlin Chen, Wei Xiong, Tengfang Kuang, Zhijie Chen, Miao Peng, Guangzong Xiao*, Kaiyong Yang, and Hui Luo
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    Figures & Tables(23)
    Classification of the optical force models
    Schematic diagram of the optical tweezers in vacuum. (a) Single-beam optical tweezers; (b) dual-beam optical tweezers
    Schematic diagram of the single-beam optical tweezers system with vertical upward[66]
    Schematic diagram of the single-beam optical tweezers system with a parabolic mirror[67]
    Influence of the misalignment distance d in the double-beam optical tweezers on the behavior of capturing microspheres. (a) When d=0, the microsphere is stably captured at the center of the optical tweezers; (b) when 0dd1, the microsphere spirals to the center; (c) when d≥d1, the microsphere rotates around the center[36]
    Principle diagram of the integrated optical tweezers. (a) Cross-section of the waveguide; (b) image of the waveguide cross-section by scanning electron microscopy; (c) spot pattern in the waveguide; (d) top view of optical tweezers using waveguides when coupling red light; (e) microscopic view of optical tweezers using waveguides[69]
    Schematic diagram of the particle loading structure by piezoelectric ceramics[71]
    Schematic diagram of the single-microsphere launching by pulsed lasers[72]
    Principle diagram of the back focal plane displacement measurement[80]
    Displacement measurement using lateral scattered laser on back focal plane[39]
    Schematic diagram of the displacement detection by balanced detectors[16]
    Principles of back-light interference displacement measurement method[83]
    Basic process of optical tweezers feedback control
    Principle of the optical momentum feedback[16]
    Schematic diagram of the parameter feedback scheme[17]
    Diagram of the feedback cooling scheme by electrostatic forces[19]
    Diagram of the cavity feedback cooling scheme. (a) Light path of the feedback cooling scheme; (b) light transmission[16]
    Schematic diagram of the self-feedback intracavity optical tweezers. (a) Intracavity optical tweezers without trapped particles; (b) when trapped particles are located in the center of optical tweezers; (c) when trapped particles are offset from the center of optical tweezers [86]
    Quality factors of the different resonance subsystems[32]
    Sensing system of the vacuum optical tweezers. (a) Experimental device; (b) optical tweezers force corresponding to axial offset; (c) time series curve of axial displacement of captured particles[30]
    Diagram of the optical tweezers system in vacuum for acceleration sensing applications[90]
    Rapid spinning of the nanoparticles suspended by a circularly polarized laser beam in optical tweezers in vacuum. (a) Experimental setup; (b) relationship curves between the rotation rate of the captured particles and the ambient air pressure[94]
    Responses of the trapped microsphere in the electric field due to residual charges[66]
    Tools

    Get Citation

    Copy Citation Text

    Xiang Han, Xinlin Chen, Wei Xiong, Tengfang Kuang, Zhijie Chen, Miao Peng, Guangzong Xiao, Kaiyong Yang, Hui Luo. Vaccum Optical Tweezers System and its Research Progress in Precision Measurement[J]. Chinese Journal of Lasers, 2021, 48(4): 0401011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Aug. 10, 2020

    Accepted: Sep. 27, 2020

    Published Online: Feb. 5, 2021

    The Author Email: Xiao Guangzong (xiaoguangzong@nudt.edu.cn)

    DOI:10.3788/CJL202148.0401011

    Topics