Infrared and Laser Engineering, Volume. 51, Issue 8, 20210702(2022)
Object point cloud classification and segmentation based on semantic information compensating global features
[1] R Osada, T Funkhouser, B Chazelle, et al. Shape distributions. ACM Transactions on Graphics (TOG), 21, 807-832(2002).
[2] [2] Sun J, Ovsjanikov M, Guibas L. A concise provably infmative multiscale signature based on heat diffusion[C]Computer graphics fum. Oxfd, UK: Blackwell Publishing Ltd, 2009, 28(5): 13831392.
[3] A Krizhevsky, I Sutskever, G E Hinton. ImageNet classification with deep conv neural networks. Communications of the ACM, 60, 84-90(2017).
[4] X Z Pan, S Q Zhang, W P Guo. Application of multi-mode deep convolutional neural network to video expression recognition. Optics and Precision Engineering, 27, 230-237(2019).
[5] [5] Qi C R, Su H, Mo K, et al. Point: Deep learning on point sets f 3D classification segmentation[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2017: 7785.
[6] [6] Qi C R, Li Y, Hao S, et al. Point++: Deep hierarchical feature learning on point sets in a metric space[C]Advances in Neural Infmation Processing Systems, 2017, 30: 50995108.
[7] [7] Li Y, Bu R, Sun M, et al. Pointcnn: Convolution on Xtransfmed points[C]Advances in Neural Infmation Process ing Systems, 2018, 31: 820830.
[8] Y Wang, Y Sun, Z Liu, et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics (TOG), 38, 1-12(2019).
[9] [9] Jaderberg M, Simonyan K, Zisserman A. Spatial transfmer wks[C]Advances in Neural Infmation Processing Systems, 2015, 28: 20172025.
[10] [10] Hastie T, Tibshirani R. Discriminant adaptive nearest neighb classification regression[C]Advances in Neural Infmation Processing Systems, 1996, 9: 409415.
[11] [11] Jégou H, Douze M, Sch C, et al. Aggregating local des into a compact image representation[C]2010 IEEE Computer Society Conference on Computer Vision Pattern Recognition. IEEE, 2010: 33043311.
[12] F Yu, V Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv, 1511.07122(2015).
[13] [13] Wu Z, Song S, Khosla A, et al. 3 D Shapes: A deep representation f volumetric shapes[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2015: 19121920.
[14] L Yi, L Guibas, A Hertzmann, et al. Learning hierarchical shape segmentation and labeling from online repositories. ACM Transactions on Graphics, 36, 1-12(2017).
[15] D Zhang, F He, Z Tu, et al. Pointwise geometric and semantic learning network on 3 D point clouds. Integrated Computer-Aided Engineering, 27, 57-75(2020).
[16] [16] Duan Y, Zheng Y, Lu J, et al. Structural relational reasoning of point clouds[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, 2019: 949958.
[17] [17] Li D, Shen X, Yu Y, et al. GGM: Graph geometric moments convolution neural wk f point cloud shape classification[C]IEEE Access, 2020, 8: 124989124998.
[18] [18] Zhai Z, Zhang X, Yao L. Multiscale dynamic graph convolution wk f point clouds classification[C]IEEE Access, 2020, 8: 6559165598.
[19] Y Lyu, X Huang, Z Zhang. EllipsoidNet: Ellipsoid representation for point cloud classification and segmentation. arXiv preprint arXiv, 2103.02517(2021).
Get Citation
Copy Citation Text
Sen Lin, Zhenyu Zhao, Xiaokui Ren, Zhiyong Tao. Object point cloud classification and segmentation based on semantic information compensating global features[J]. Infrared and Laser Engineering, 2022, 51(8): 20210702
Category: Image processing
Received: Jan. 20, 2022
Accepted: --
Published Online: Jan. 9, 2023
The Author Email: Zhao Zhenyu (610685324@qq.com)