Chinese Journal of Lasers, Volume. 35, Issue 9, 1283(2008)
Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier
[1] [1] http://nano.cancer.gov/resource_center/tech_backgrounder.asp
[2] [2] R. Hooke. Micrographia [M]. London: Royal Society of London, 1664
[3] [3] E. Abbe. Contributions to the theory of the microscope and that microscopic perception [J]. Arch. Microsc. Anat., 1873, 9: 413~468 (in German)
[4] [4] D. Attwood. New opportunities at soft-X-ray wavelengths [J]. Phys. Today, 1992, 45(8): 24~31
[5] [5] M. V. Matz, A. F. Fradkov, Y. A. Labas et al.. Fluorescent proteins from nonbioluminescent Anthozoa species [J]. Nat. Biotechnol., 1999, 17(10): 969~973
[6] [6] K. Knig, T. Krasieva, E. Bauer et al.. Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay, and comet assay [J]. J. Biomed. Opt., 1996, 1: 217~222
[7] [7] L. Reimer. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer-Verlag, 2000
[11] [11] G. Binnig, H. Rohrer, Ch. Gerber et al.. Surface studies by scanning tunneling microscopy [J]. Phys. Rev. Lett., 1982, 49: 56~60
[12] [12] E. H. Synge. A suggested method for extending microscopic resolution into the ultra-microscopic region [J]. Philos. Mag., 1928, 6: 356
[13] [13] J. Michaelis,C. Hettich, J. Mlynek et al.. Optical microscopy using a single- molecule light source [J]. Nature, 2000, 405: 325~327
[17] [17] D. Toomre, D. J. Manstein. Lighting up the cell surface with evanescent wave microscopy [J]. Trends Cell Biol., 2001, 11 (7): 298~303
[19] [19] Y. Garini, B. J. Vermolenand, I. T. Young. From micro to nano: recent advances in high-resolution microscopy [J]. Curr. Opin. Biotechnol., 2005, 16: 3~12
[20] [20] L. Rayleigh. On the manufacture and theory of diffraction-gratings[J]. Philos. Mag., 1874, 47: 193
[21] [21] M. Schrader, S. W. Hell, H. T. M. VanderVoort. Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration [J]. J. Appl. Phys., 1998, 84: 4033~4042
[22] [22] M. Nagorni, S. W. Hell. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy I. Comparative study of concepts [J]. J. Opt. Soc. Am. A, 2001, 18(1): 36~48
[23] [23] M. Nagorni, S. W. Hell. Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration [J]. J. Opt. Soc. Am. A, 2001, 18(1): 49~54
[24] [24] E. Alexander, S. W. Hell. Fluorescence microscopy with super-resolved optical sections [J]. Trends Cell Biol., 2005, 15(4): 207~215
[25] [25] M. G. L. Gustafsson. Doubling the lateral resolution of wide-field fuorescence microscopy using structured illumination [C]. SPIE, 2000, 3919: 141~150
[26] [26] S. W. Hell. Double-Scanning Confocal Microscope [P]. Europe Patent, 0491289, 1990
[27] [27] R. Heintzmann, T. M. Jovin, C. Cremer. Saturated patterned excitation microscopy: a concept for optical resolution improvement [J]. J. Opt. Soc. Am. A, 2002, 19(8): 1599~1609
[28] [28] V. Westphal, L. Kastrup, S. W. Hell. Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy [J]. Appl. Phys. B, 2003, 77: 377~380
[29] [29] R. B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations [J]. J. Cell Biol., 2003, 160(5): 629~633
[30] [30] M. Dyba. STED-4Pi Microscopy [D]. Rupertus-Carola University of Heidelberg, 2004, 38~43
[31] [31] S. W. Hell, E. H. K. Stelzer. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation [J]. Opt. Commun., 1992, 93: 277~282
[32] [32] M. Minsky. Microscopy Apparatus [P]. US Patent, 3013467, 1961
[33] [33] T. Ota, H. Fukuyama, Y. Ishihara et al.. The keratocyte network of human cornea: A three-dimensional study using confocal laser scanning fluorescence microscopy [J]. Cornea, 2000, 19(2): 185~193
[34] [34] N.A.M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker. Transient gels in colloid-polymer mixtures studied with fluorescence confocal scanning laser microscopy [J]. Physica A, 1999, 264 (1-2): 64~74
[35] [35] J. R. Swedlow, K. Hu, P. D. Andrews et al.. Measuring tubulin content in toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy [J]. PNAS, 2002, 99(4): 2014~2019
[36] [36] M. Oheim, D. J. Michael, M. Geisbauer et al.. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches [J]. Adv. Drug Deliv. Rev., 2006, 58: 788~808
[37] [37] T. Wilson. The role of the pinhole in confocal imaging system [C]. J. Pawley, Handbook of biological confocal microscopy, New York: Plenum Press, 1995, 167~168
[38] [38] T. R. Corle, G. S. Kino. Confocal Scanning Optical Microscopy and Related Imaging Systems [M]. San Diego: Academic Press, 1996, 74
[39] [39] J. Pawley. Fundamental limits in confocal microscopy [C]. J. Pawley, Handbook of biological confocal microscopy, New York: Plenum Press, 1995, 19~38
[40] [40] M. Glass, T. Dabbs. The experimental effect of detector size on confocal lateral resolution [J]. J. Microsc., 1991, 164:153~158
[41] [41] T. Wilson. Optical sectioning in confocal fluorescent microscopes [J]. J. Microsc., 1989, 154:143~156
[42] [42] D. R. Sandison, D. W. Piston, R. M. Williams et al.. Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes [J]. Appl. Opt., 1995, 34:3576~3588
[43] [43] I. J. Cox, C. J. R. Sheppard. Information capacity and resolution in an optical system [J]. J. Opt. Soc. Am. A, 1986, 3: 1152~1158
[44] [44] L. E. Meyr, N. Otberg, W. Sterry et al.. In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin [J]. J. Biomed. Opt., 2006, 11(4): 044012
[45] [45] D. Vivares, E. W. Kaler, A. M. Lenhoff. Polyhedral instability of glucose isomerase crystals as revealed by confocal scanning fluorescence microscopy [J]. Crys. Growth Des., 2007, 7(8): 1411~1415
[46] [46] E. H. K. Stelzer, S. Lindek. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy [J]. Opt. Commun., 1994, 111: 536~547
[47] [47] S. Lindek, E. H. K. Stelzer. Optical transfer functions for confocal theta fluorescence microscopy [J]. J. Opt. Soc. Am. A, 1996, 13(3): 479~482
[48] [48] O. Haeberl, H. Furukawa, K. Tenjimbayashi. Polarized confocal theta microscopy[J]. C. R. Physique, 2002, 3: 1445~1450
[49] [49] S. Lindek, C. Cremer, E. H. K. Stelzer. Confocal theta fluorescence microscopy with annular apertures [J]. Appl. Opt., 1996, 35(1): 126~130
[50] [50] S. Lindek, E. K. Stelzer. Single-lens theta microscopy - a new implementation of confocal theta microscopy [J]. J. Microsc., 1997, 188: 280~284
[51] [51] S. Lindek, J. Swoger, E. H. K. Stelzer. Single-lens theta microscopy: resolution, efficiency and working distance [J]. J. Mod. Opt., 1999, 46: 843~858
[52] [52] M. Geppert-Mayer. On elementary processes with two quantum steps [J]. Ann. Phys., 1931, 9: 273~294
[53] [53] D. J. Bradley, M. H. R. Hutchinson, H. Koetser. Interactions of pico-second laser pulses with organic molecules. II. Two-photon absorption cross-sections [J]. Proc. R. Soc. Lond. A, 1972, 329: 105~119
[54] [54] F. P. Schafer, H. Mller. Tunable dyering-laser [J]. Opt. Commun., 1971, 2:407~409
[55] [55] J. A. Valdemanis, R. L. Fork. Design considerations for a femtosecond pulse laser: balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain [J]. IEEE J. Quantum Electron., 1986, QE-22(1):112~118
[56] [56] D. E. Spence, P. N. Kean, W. Sibbert. 60-fsec pulse generation from a self-mode- locked Ti:sapphire laser [J]. Opt. Lett., 1991, 16: 42~44
[57] [57] W. Denk, J. Strickler, W. W. Webb. Two-Photon Laser Microscopy [P]. US Patent, 5034613, 1991
[58] [58] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248: 73~76
[59] [59] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: Multiphoton microscopy in the biosciences [J]. Nat. Biotechnol., 2003, 21(11): 1369~1377
[60] [60] M. Rubart. Two-photon microscopy of cells and tissue [J]. Circ. Res., 2004, 95: 1154~1166
[61] [61] M. Gu, C. J. R. Sheppard. Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy [J]. J. Microsc., 1995, 177: 128~137
[62] [62] C. Xu, W. Zipfel, J. B. Shear et al.. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy [J]. PNAS, 1996, 93: 10763~10768
[63] [63] B. R. Masters, P. T. C. So, E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin [J]. Biophys. J., 1997, 72: 2405~2412
[64] [64] B. R. Masters, P. T. C. So. Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: a comparison [J]. Microsc. Microanal., 1999, 5: 28~289
[65] [65] A. Diaspro, M. Robello. Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures [J]. J. Photochem. Photobio. B-Biol., 2000, 55(1): 1~8
[66] [66] K. Svoboda, R. Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience [J]. Neuron, 2006, 50: 823~839
[67] [67] P. Theer, M. T. Hasan, W. Denk. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier [J]. Opt. Lett., 2003, 28(12): 1022~1024
[68] [68] P. Theer, W. Denk. On the fundamental imaging-depth limit in two-photon microscopy [J]. J. Opt. Soc. Am. A, 2006, 23(12): 3139~3149
[69] [69] P. Theer. On the Fundamental Imaging-Depth Limit in Two-Photon Microscopy [D]. Ruperto-Carola University of Heidelberg, 2004, 30~40
[71] [71] B. A. Molitoris, R. M. Sandova. Intravital multiphoton microscopy of dynamic renal process [J]. Am. J. Physiol. -Renal Physiol., 2005, 288: 1084~1089
[72] [72] M. Oheim, E. Beaurepaire, E. Chaigneau et al.. Two-photon microscopy in brain tissue: parameters influencing the imaging depth [J]. J. Neurosci. Methods, 2001, 111 (1): 29~37
[73] [73] R. Bakalova. Ultra-fast biosensors and multi-photon microscopy in the future of brain studies [J]. Cell. Mol. Neurobio., 2007, 27 (3): 359~365
[75] [75] J. C. Malone, A. F. Hood, T. Conley et al.. Three-dimensional imaging of human skin and mucosa by two-photon laser scanning microscopy [J]. J. Cutan. Pathol., 2002, 29 (8): 453~458
[76] [76] P. Bousso, E. A. Robey. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy [J]. Immunity, 2004, 21: 349~355
[77] [77] R. K. Jain, L. L. Munn, D. Fukumura. Dissecting tumor pathophysiology using intravital microscopy [J]. Nat. Rev. Cancer, 2002, 2: 266~276
[78] [78] G. H. Patterson, D. W. Piston. Photobleaching in two-photon excitation microscopy [J]. Biophys. J.,2000, 78: 2159~2162
[79] [79] P. D. Higdon, P. Torok, T. Wilson. Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes [J]. J. Microsc., 1999, 193: 127~141
[80] [80] G. J. R. Sheppard, M. Gu. Image formation in two-photon fluorescence microscopy [J]. Optik, 1990, 86:104~106
[81] [81] I. Gryczynski, H. Malak, J. R. Lakowicz. Two-color two-photon excitation of Indole [J]. Biospectroscopy, 1997, 3: 97~101
[82] [82] M. Lim, C. Saloma. Confocality condition in two-color excitation microscopy with two focused excitation beams [J]. Opt. Commun., 2002, 207: 121~130
[83] [83] C. M. Blanca, C. Saloma. Two-color excitation fluorescence microscopy through highly scattering media [J]. Appl. Opt., 2001, 40(16): 2722~2729
[84] [84] J. Palero, W. Garcia, C. Saloma. Two-color (two-photon) excitation fluorescence with two confocal beams and a Raman shifter [J]. Opt. Commun., 2002, 211(1-6): 65~71
[85] [85] M. Lim, C. Saloma. Primary spherical aberration in two-color two-photon excitation fluorescence microscopy with two confocal excitation beams [J]. Appl. Opt., 2003, 42(17): 3398~3406
[86] [86] M. O. Cambaliza, C. Saloma. Advantages of two-color excitation fluorescence microscopy with two confocal excitation beams [J]. Opt. Commun., 2000, 184: 25~35
[87] [87] Chen Wang, Lingling Qiao, Zhengle Mao et al.. Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation [J]. J. Opt. Soc. Am. B, 2008,25(6): 976~982
[88] [88] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. J. Microsc., 2000, 198: 82~87
[89] [89] R. Heintzmann, C. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating [C]. SPIE, 1998, 3568: 185~195
[90] [90] J. T. Frohn, H. F. Knapp, A. Stemmer. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination [J]. PNAS, 2000, 97(13): 7232~7236
[91] [91] J. T. Frohn. Super-resolution Fluorescence Microscopy by Structured Light Illumination [D]. Swiss Federal Institute of Technology, 2000, 7~12
[92] [92] R. Juskaitis, T. Wilson, M. A. A. Neil et al.. Efficient real-time confocal microscopy with white light sources [J]. Nature, 1996, 383: 804~806
[93] [93] M. A. A. Neil, T. Wilson, R. Juskaitis. Method of obtaining optical sectioning by using structured light in a conventional microscope [J]. Opt. Lett., 1997, 22: 1905~1907
[94] [94] M. A. A. Neil, R. Juskaitis, T. Wilson. Real time 3D fluorescence microscopy by two beam interference illumination [J]. Opt. Commun., 1998, 153: 1~4
[95] [95] M. A. A. Neil, T. Wilson, R. Juskaitis. A light efficient optically sectioning microscope [J]. J. Microsc., 1998, 189: 114~117
[96] [96] R. Heintzmann. Saturated patterned excitation microscopy with two-dimensional excitation patterns [J]. Micron, 2003, 34: 283~291
[97] [97] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy wide-field fluorescence imaging with theoretically unlimited resolution [J]. PNAS, 2005, 102(37): 13081~13086
[98] [98] P. E. Hnninen, S. W. Hell, A. J. Salo et al.. Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research [J]. Appl. Phys. Lett., 1995, 66: 698~700
[99] [99] F. Lanni, D. L. Taylor, A. S. Waggoner. Standing Wave Luminescence Microscopy [P]. US Patent, 4621911, 1986
[100] [100] F. Lanni, D. L. Taylor, B. Bailey. Field Synthesis and Optical Subsectioning for Standing Wave Microscopy [P]. US Patent, 5394268, 1995
[101] [101] F. Lanni, D. L. Taylor, B. Bailey. Field Synthesis and Optical Subsectioning for Standing Wave Microscopy (continuation in part) [P]. US Patent, 5394268, 1995
[102] [102] B. Bailey, V. Krishnamurthi, D. L. Farkas et al.. Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy [C]. SPIE, 1994, 2184: 208~213
[103] [103] B. Bailey, D. L. Farkas, D. L. Taylor et al.. Enhancement of axial resolution in fluorescence microscopy by standing wave excitation [J]. Nature, 1993, 366: 44~48
[104] [104] V. Krishnamurthi, B. Bailey, F. Lanni. Image processing in 3-D standing wave fluorescence microscopy [C].SPIE, 1994, 2655: 18~25
[105] [105] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution [C]. SPIE, 1996, 2655: 62~66
[106] [106] M. G. L Gustafsson, D. A. Agard, J. W. Sedat. I5M: 3D widefield light microscopy with better than 100 nm axial resolution [J]. J. Microsc., 1999, 195(1): 10~16
[107] [107] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Method and Apparatus for Three-dimensional Microscopy with Enhanced Depth Resolution [P]. US Patent, 5671085, 1997
[108] [108] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses [C]. SPIE, 1995, 2412: 147
[109] [109] S. W. Hell, E. H. K. Stelzer. Properties of a 4Pi-confocal fluorescence microscope [J]. J. Opt. Soc. Am. A, 1992, 9: 2159~2166
[110] [110] M. Nagorni, S. W. Hell. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100-to 150-nm resolution [J]. J. Struct. Biol., 1998, 123: 236~247
[111] [111] M. Schrader, K. Bahlmann, G. Giese et al.. 4Pi-confocal imaging in fixed biological specimens [J]. Biophys. J., 1998, 75: 1659~1668
[112] [112] S. W. Hell, S. Lindek, C. Cremer et al.. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution [J]. Appl. Phys. Lett., 1994, 64: 1335~1337
[113] [113] H. Gugel, J. Bewersdorf, S. Jakobs et al.. Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy [J]. Biophys. J., 2004, 87: 4146~4152
[114] [114] M. Schrader, M. Kozubek, S. W. Hell et al.. Optical transfer functions of 4Pi confocal microscopes: theory and experiment [J]. Opt. Lett., 1997, 22: 436~438
[115] [115] M. Martinez-Corral, M. T. Caballero, A. Pons et al.. Sidelobe decline in single-photon 4Pi microscopy by Toraldo rings [J]. Micron, 2003, 34: 319~325
[116] [116] M. C. Lang, J. Engelhardt, S. W. Hell. 4Pi microscopy with linear fluorescence excitation [J]. Opt. Lett., 2007, 32(3): 259~261
[117] [117] M. C. Lang, T. Müller, J. Engelhardt et al.. 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging [J]. Opt. Express, 2007,15(5): 2459~2467
[118] [118] M. Gu, C. J. R. Sheppard. Three-dimensional transfer functions in 4Pi confocal microscopes [J]. J. Opt. Soc. Am. A, 1994, 11: 1619~1627
[119] [119] S. W. Hell, S. Lindek, E. H. K. Stelzer. Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy [J]. J. Mod. Opt., 1994, 41(4): 675~681
[120] [120] W. H. Richardson. Bayesian-based iterative method of image restoration [J]. J. Opt. Soc. Am. , 1972, 62: 55~59
[121] [121] Jianfang Chen,K. Midorikawa. Two-color two-photon 4Pi fluorescence microscopy [J]. Opt. Lett., 2004, 29(12): 1354~1356
[122] [122] A. Egner, M. Schrader, S. W. Hell. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy [J]. Opt. Commun., 1998, 153: 211~217
[123] [123] J. Bewersdorf, R. Pick, S. W. Hell. Multifocal multiphoton microscopy [J]. Opt. Lett., 1998, 23(9): 655~657
[124] [124] A. Egner, S. Jakobs, S. W. Hell. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondriain live yeast [J]. PNAS, 2002, 99: 3370~3375
[125] [125] A. Egner, S. Verrier, A. Goroshkov et al.. 4Pi-microscopy of the Golgi apparatus in live mammalian cells [J]. J. Struct. Biol., 2003, 147: 70~76
[126] [126] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy [J].Opt. Lett., 1994, 19(11): 780~782
[127] [127] A. Einstein.On the quantum theory of radiation [J].Phys. J. 1917, 18: 121~128 (in German)
[128] [128] L. Kastrup, H. Blom, C. Eggeling et al.. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes [J]. Phys. Rev. Lett., 2005, 94: 178104
[129] [129] V. Westphal, S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope [J]. Phys. Rev. Lett., 2005, 94: 143903
[130] [130] S. W. Hell. Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering [C]. J. R. Lakowicz, Fluorescence spectroscopy, New York: Plenum Press, 1997, 5: 361~422
[131] [131] T. A. Klar. Progress in Stimulated Emission Depletion Microscopy [D]. Rupertus-Carola University of Heidelberg, 2001, 10~21
[133] [133] T. A. Klar, E. Engel, S. W. Hell. Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes [J]. Phys. Rev. E, 2001, 64: 066613
[134] [134] T. A. Klar, S. Jakobs, M. Dyba et al.. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission [J]. PNAS, 2000, 97: 8206~8210
[135] [135] M. Dyba, S. W. Hell. Focal spots of size of λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution [J]. Phys. Rev. Lett., 2002, 88: 163901
[136] [136] M. Dyba, J. Keller, S. W. Hell. Phase filter enhanced STED-4Pi fluorescence microscopy theory and experiment [J]. New J. Phys. 2005, 7: 134
[137] [137] K. I. Willig, S. O. Rizzoli, V. Westphal et al.. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis [J]. Nature, 2006, 440 (7086): 935~939
[138] [138] R. J. Kittel, C. Wichmann, T. M. Rasse et al.. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release [J]. Science, 2006, 312(5776): 1051~1054
[139] [139] G. Donnert, J. Keller, R. Medda et al.. Macromolecular-scale resolution in biological fluorescence microscopy [J]. PNAS, 2006, 103(31): 11440~11445
[140] [140] K. I. Willig, J. Keller, M. Bossi et al.. STED microscopy resolves nanoparticle assemblies [J]. New J. Phys., 2006, 8: 106
[141] [141] K. I. Willig, B. Harke, R. Medda et al.. STED microscopy with continous wave beams [J]. Nat. Methods, 2007, 4(11): 915~918
[142] [142] M. Dyba, S. W. Hell. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission [J]. Appl. Opt., 2003, 42(25): 1523~1529
[143] [143] C. Eggeling, A. Volkmer, C. A. M. Seidel. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy [J]. Chem.Phys.Chem.., 2005, 6: 791~804
[144] [144] S. W. Hell, M. Kroug. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit [J]. Appl. Phys. B, 1995, 60: 495~497
[145] [145] S. Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving [J]. Phys. Rev. Lett., 2007, 98: 218103
[146] [146] S. W. Hell. Towards the nanoscopy [J]. Nat. Biotechnol., 2003, 21(11): 1347~1355
[147] [147] S. W. Hell. Far-field optical nanoscopy [J]. Science, 2007, 316:1153~1158
[148] [148] J. Keller, A. Schnle, S. W. Hell. Efficient fluorescence inhibition patterns for RESOLFT microscopy [J]. Opt. Express, 2007, 15(6): 3361~3371
[149] [149] M. Sauer. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging [J]. PNAS, 2005, 102: 9433~9434
[150] [150] D. M. Chudakov, V. V. Belousov, A. G. Zaraisky et al.. Kindling fluorescent proteins for precise in vivo photolabeling [J]. Nat. Biotechnol., 2003, 21: 191~194
[151] [151] K. A. Lukyanov, A. F. Fradkov, N. G Gurskaya et al.. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog [J]. J. Biol. Chem., 2000, 275: 25879~25882
[152] [152] R. Ando, H. Mizuno, A. Miyawaki. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting [J]. Science, 2004, 306: 1370~1373
[153] [153] S. Habuchi, R. Ando, P. Dedecker et al.. From the cover: Reversible single-molecule photoswitching in the GFP-like fluorescent protein dronpa [J]. PNAS, 2005, 102: 9511~9516
[154] [154] M. Hofmann, C. Eggeling, S. Jakobs et al.. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins [J]. PNAS, 2005, 102(49): 17565~17569
[155] [155] S. W. Hell. Strategy for far-field optical imaging and writing without diffraction limit [J]. Phys. Lett. A, 2004, 326: 140~145
[156] [156] M. Bossi, J. Flling, M. Dyba et al.. Breaking the diffraction resolution barrier in far field microscopy by molecular optical bistability [J]. New J. Phys., 2006, 8: 275
[157] [157] S. W. Hell, S. Jakobs, L. Kastrup. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions [J]. Appl. Phys. A, 2003, 77: 859~860
[158] [158] N. S. White, R. J. Errington. Fluorescence techniques for drug delivery research: theory and practice [J]. Advanced Drug Delivery Reviews, 2005, 57: 17~42
[159] [159] D. Schachtman, W. H. Liu. GFP-based FRET microscopy in living plant cells [J], Trends in Plant Sci., 1999, 4(7): 287~291
[160] [160] K. Truong, M. Ikura. The use of FRET imaging microscopy to detect protein\|protein interactions and protein conformational changes in vivo [J]. Curr. Opin. Struct. Biol., 2001, 11: 573~578
[161] [161] H. Edelhoch, L. Brand, M. Wilchek. Fluorescence studies with tryptophyl peptides [J]. Isr. J. Chem. 1963, 1: 216~217
[162] [162] T. Frster. Delocalized excitation and excitation transfer [C]. O. Sinanoglu, Modern Quantum Chemistry, New York: Academic Press, 1965, 3: 93~137
[163] [163] R. B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations [J]. J. Cell Biol., 2003, 160(5): 629~633
[164] [164] M. A. Hink, T. Bisselin, A. J. Visser. Imaging protein-protein interactions in living cells [J]. Plant Mol. Biol., 2002, 50: 871~883
[165] [165] G. W. Gordon, G. Berry, X. H. Liang et al.. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy [J]. Biophys. J., 1998, 74: 2702~2713
[166] [166] A. Hoppe, K. Christensen, J. A. Swanson. Fluorescence resonance energy transfer-based stoichiometry in living cells [J]. Biophys. J., 2002, 83: 3652~3664
[167] [167] M. Elangovan, H. Wallrabe, Y. Chen et al.. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy [J]. Methods, 2003, 29: 58~73
[168] [168] V. S. Kraynov, C. Chamberlain, G. M. Bokoch et al.. Localized Rac activation dynamics visualized in living cells [J]. Science, 2000, 290: 333~337
[170] [170] K. Suhling, P. M. W. French, D. Phillips. Time-resolved fluorescence microscopy [J]. Photochem. Photobiol. Sci., 2005, 4: 13~22
[171] [171] F. Festy, S. M. Ameer-Beg, T. Ng et al.. Imaging proteins in vivo using fluorescence lifetime microscopy [J]. Mol. BioSyst., 2007, 3: 381~391
[172] [172] M. Elangovan, R. N. Day, A. Periasamy. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell [J]. J. Microsc., 2002, 205: 3~14
[173] [173] M. Peter, S. M. Ameer-Beg. Imaging molecular interactions by multiphoton FLIM [J]. Biol. Cell, 2004, 96: 231~236
[174] [174] B. J. Bacskai, J. Skoch, G. A. Hickey et al.. Fluorescence resonance energy transfer determinations using multiphoton fluorescence life time imaging microscopy to characterize amyloid-beta plaques [J]. J. Biomed. Opt., 2003, 8: 368~375
[175] [175] R. Yasuda. Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy [J]. Curr. Opin. Neurobiol., 2006, 16: 551~561
[176] [176] R. N. Day, D. W. Piston. Spying on the hidden lives of proteins [J]. Nat. Biotechnol., 1999, 17: 425~426
[177] [177] E. Gratton, S. Breusegem, J. Sutin et al.. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods [J]. J. Biomed. Opt., 2003, 8: 381~390
[178] [178] W. Becker. Advanced Time-Correlated Single Photon Counting Techniques [M]. New York: Springer, 2005, 20~24
[179] [179] C. J. D. Grauw, H. C. Gerritsen. Multiple time-gate module for fluorescence lifetime imaging [J]. Appl. Spectrosc., 2001, 55: 670-678
[180] [180] K. Carlsson, J. Philip. Theoretical investigation of the signal-to-noise ratio for different fluorescence lifetime imaging techniques [C]. SPIE, 2002, 4622:70~78
[181] [181] E. A. Jares-Erijman, T. M. Jovin. FRET imaging [J]. Nat. Biotechnol., 2003, 21(11): 1387~1395
[182] [182] A. K. Kenworthy, M. Edidin. Distribution of a glycosylphosphatidylinositol -anchored protein at the apical surface of MDCK cells examined at a resolution of <10 using imaging fluorescence resonance energy transfer [J]. J. Cell Biol., 1998, 142: 69~84
[183] [183] F. K. M. Chan, R. M. Siegel, D. Zacharias et al.. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein [J]. Cytometry, 2001, 44: 366~368
[184] [184] M. E Dickinson, G. Bearman, S. Tille et al.. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy [J]. Biotechniques, 2001, 31: 1272, 1274~1276, 1278
[185] [185] T. Zimmermann, J. Rietdorf, R. Pepperkok. Spectral imaging and its applications in live cell microscopy [J]. FEBS Lett., 2003, 546(1): 87~92
[186] [186] A. L. Mattheyses, A. D. Hoppe, D. Axelrod. Polarized fluorescence resonance energy transfer microscopy [J]. Biophys. J., 2004, 87: 2787~2797
[187] [187] D. S. Lidke, P. Nagy, B. G. Barisas et al.. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET) [J]. Biochem. Soc. Trans., 2003, 31: 1020~1027
[188] [188] T. Nagai, S. Yamada, T. Tominaga et al.. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins [J]. PANS, 2004, 101: 10554~10559
[189] [189] M. V. Overton, K. J. Blumer. G-protein-coupled receptors function as oligomers in vivo [J]. Curr. Biol., 2000,10: 341-344
[190] [190] A. Sorkin, M. McClure, F. Huang et al.. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy [J]. Curr. Biol., 2000, 10(21): 1395~1398
[191] [191] R. G. H. Immink, T. W. J. Gadella, S. Ferrario et al.. Analysis of MADS box protein-protein interactions in living plant cells [J]. PNAS, 2002, 99: 2416~2421
[192] [192] Y. Nagai, M. Miyazaki, R. Aoki et al.. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo [J]. Nat. Biotechnol., 2000, 18: 313~316
[193] [193] P. W. Vanderklish, L. A. Krushel, B. H. Holst et al.. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer [J]. PNAS, 2000, 97: 2253~2258
[194] [194] B. Ponsioen, J. Zhao, J. Riedl et al.. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator [J] EMBO Rep., 2004, 5: 1176~1180
[195] [195] M.A.Rizzo. An improved cyan fluorescent protein variant useful for FRET [J]. Nat. Biotechnol., 2004, 22: 445~449
[196] [196] G. J. Kremers, J. Goedhart, E. B. van Munster et al.. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Frster radius [J]. Biochemistry, 2006, 45: 6570~6580
[197] [197] N. C. Shaner, R. E. Campbell, P. A. Steinbach et al.. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein [J]. Nat. Biotechnol., 2004, 22: 1567~1572
[198] [198] T. Nagai, K. Ibata, E. S. Park et al.. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications [J]. Nat. Biotechnol., 2002, 20: 87~90
[199] [199] A. Yildiz, J. N. Forkey, S. A. McKinney et al.. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization [J]. Science, 2003, 300: 2061~2065
[200] [200] M. K. Cheezum, W. F. Walker, W. H. Guilford. Quantitative comparison of algorithms for tracking single fluorescent particles [J]. Biophys. J., 2001, 81: 2378~2388
[201] [201] R. E. Thompson, D. R. Larson, W. W. Webb. Precise nanometer localization analysis for individual fluorescent probes [J]. Biophys. J., 2002, 82: 2775~2783
[202] [202] W. E. Moerner, L. Kador. Optical detection and spectroscopy of single molecules in a solid [J]. Phys. Rev. Lett., 1989, 62: 2535~2538
[203] [203] M. Orrit, J. Bernard. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal [J]. Phys. Rev. Lett., 1990, 65: 2716~2719
[204] [204] R. M. Dickson, D. J. Norris, Y. Tzeng et al.. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels [J]. Science, 1986, 274: 966~969
[205] [205] H. Yang, G. Luo, P. Karnchanaphanurach et al.. Protein conformational dynamics probed by single-molecule electron transfer [J]. Science, 2003, 302: 262~266
[206] [206] X. S. Xie. Single-molecule spectroscopy and dynamics at room temperature [J]. Acc. Chem. Res., 1996, 29: 598~606
[207] [207] W. P. Ambrose, P. M. Goodwin, J. H. Jett et al.. Single molecule fluorescence spectroscopy at ambient temperature [J]. Chem. Rev., 1999, 99: 2929~2956
[208] [208] E. J. Peterman, H. Sosa, W. E. Moerner. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors [J]. Annu. Rev. Phys. Chem., 2004, 55: 79~96
[209] [209] E. S. Yeung. Dynamics single biomolecular in free solution [J]. Annu. Rev. Phys. Chem., 2004, 55: 97~126
[210] [210] E. Barkai, Y. J. Jung, R. Silbey. Theory of single-molecule spectroscopy: beyond the ensemble average [J]. Annu. Rev. Phys. Chem., 2004, 55: 457~507
[211] [211] F. Kilzer, M. Orrit. Single-molecule optics [J]. Annu. Rev. Phys. Chem., 2004, 55: 585~611
[212] [212] P. E. Barbara. Single-molecule spectroscopy [J]. Acc. Chem. Res., 2005, 38: 503~610
[213] [213] E. Betzig. Proposed method for molecular optical imaging [J]. Opt. Lett., 1985, 20(3): 237~239
[214] [214] L. S. Churchman, Z. kten, R. S. Rock et al.. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time [J]. PNAS, 2005, 102(5): 1419~1423
[215] [215] L. S. Churchman, H. Flyvbjerg, J. A. Spudich. A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques [J]. Biophys. J., 2006, 90: 668~671
[216] [216] X. H. Qu, D. Wu, L. Mets et al.. Nanometer-localized multiple single-molecule fluorescence microscopy [J]. PNAS, 2004, 101(31): 11298~11303
[217] [217] M. P. Gordon, T. Ha, P. R. Selvin. Single-molecule high-resolution imaging with photobleaching [J]. PNAS, 2004, 101(17): 6462~6465
[218] [218] K. A. Lidke, B. Rieger, T. M. Jovin et al.. Superresolution by localization of quantum dots using blinking statistics [J]. Opt. Express, 2005, 13(18): 7052~7062
[219] [219] E. Betzig, R. Sougrat, O. W. Lindwasser et al.. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313: 1642~1645
[220] [220] G. H. Patterson, E. Betzig, J. Lippincott-Schwartz1 et al.. Developing photoactivated location microscopy (PALM), Biomedical imaging: from nano to macro [C]. 4th IEEE International Symposium, 2007, 940~943
[221] [221] S. Chen, H. E. Hamm. PALM reading: Seeing the future of cell biology at higher resolution [J]. Developmental Cell, 2006, 11: 438~439
[222] [222] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophys. J., 2006, 91: 4258~4272
[223] [223] R. Ando, H. Hama, M. Yamamoto-Hino et al.. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein [J]. PNAS, 2002, 99(20): 12651~12656
[224] [224] G. H. Patterson, J. Lippincott-Schwartz. A photoactivatable GFP for selective photolabeling of proteins and cells [J]. Science, 2002, 297: 1873~1877
[225] [225] J. Wiedenmann, S. Ivanchenko, F. Oswald et al.. EosFP, a fluorescent marker protein with UV- inducible green-to-red fluorescence conversion [J]. PNAS, 2004, 101: 15905~15910
[226] [226] K. A. Lukyanov, D. M. Chudakov, S. Lukyanov et al.. Photoactivatable fluorescent proteins [J]. Nat. Rev. Mol. Cell Biol., 2005, 6: 885~891
[227] [227] W. E. Moerner. Single-molecule optical spectroscopy of autofluorescent proteins [J]. J. Chem. Phys., 2002, 117(24): 10925~10937
[228] [228] R. Rigler, M. Orrit, T. Basché. Single molecule spectroscopy [C]. Nobel conference lectures, Berlin: Spirnger, 2001
[229] [229] M. J. Rust, M. Bates, X. W. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM) [J]. Nat. Methods, 2006, 3(10): 793~795
[230] [230] W. E. Moerner. New directions in single-molecule imaging and analysis[J]. PNAS, 2007, 104(311): 12596~12602
Get Citation
Copy Citation Text
Mao Zhengle, Wang Chen, Cheng Ya. Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier[J]. Chinese Journal of Lasers, 2008, 35(9): 1283