The Journal of Light Scattering, Volume. 35, Issue 4, 339(2023)

Research progress of core-shell structure in surface enhanced fluorescence

GUO Shu and WANG Mingli
Author Affiliations
  • [in Chinese]
  • show less
    References(58)

    [1] [1] He W, Sun X Y, Liu B, et al. A label-free “SEF-FRET” fluorescent sensing platform for ultrasensitive DNA detection based on AgNPs SAMs[J]. Talanta,2019,205:120072.

    [2] [2] Badshah M A, Koh N Y, Zia A W, et al. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing[J]. Nanomaterials,2020,10(9):1749.

    [3] [3] Cao H J, Shang Z B, Cao H W, et al. An efficient and low-cost surface-enhanced fluorescence substrate for trace detection of melamine in milk samples[J]. Optik,2022,268:169856.

    [4] [4] Peng L, Liu Y, Zhang J, et al. Surface Plasmon-Enhanced NIR-II Fluorescence in a Multilayer Nanoprobe for Through-Skull Mouse Brain Imaging[J]. ACS Applied Materials & Interfaces,2022,14(34):38575-38583.

    [5] [5] Li Y,Hao Z S, Cao H J, et al. Study on annealed graphene oxide nano-sheets for improving the surface enhanced fluorescence of silver nanoparticles[J]. Optics & Laser Technology,2023,160:109054.

    [6] [6] Geddes C D,Parfenov A, Lakowicz J R. Photodeposition of Silver Can Result in Metal-Enhanced Fluorescence[J]. Applied Spectroscopy,2003,57(5):526-531.

    [8] [8] Zheng M Q, Kang Y F, Liu D, et al. Detection of ATP from “fluorescence” to “enhanced fluorescence” based on metal-enhanced fluorescence triggered by aptamer nanoswitch[J]. Sensors and Actuators B: Chemical,2020,319:128263.

    [9] [9] Huo P P, Li Z J, Gong C C, et al. Silver nanoparticles combined with amino-functionalized UiO-66 for sensitive detection of glutathione[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2022,267(2):120617.

    [12] [12] Drexhage K H. Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence,1970,1/2:693-701.

    [13] [13] Drexhage K H. Progress in Optics[M]. Wolf E. Amsterdam: North-Holland,1974:161.

    [14] [14] Zhang J, Fu Y,Lakowicz J R. Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size [J]. J Phys Chem C,2007,111:50.

    [15] [15] Fu Y, Zhang J,Lakowicz J R. Metal-Enhanced Fluorescence of Single Green Fluorescent Protein (GFP)[J]. Langmuir,2008,24:3429.

    [18] [18] Zhang Y Y, Zhang L J, Hu L, et al. Multifunctional Zn–Al layered double hydroxides for surface-enhanced Raman scattering and surface-enhanced infrared absorption[J]. Dalton Transactions,2019,48:426-434.

    [19] [19] Chen Y, Munechika K, Ginger D S. Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles[J]. Nano Letters,2007,7(3):690-696.

    [20] [20] Zhang X F, Kong X M,Lv Z P, et al. Bifunctional quantum dot-decorated Ag@SiO2 nanostructures for simultaneous immunoassays of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF)[J]. Journal of Materials Chemistry B,2013,1:2198-2204.

    [22] [22] Peak S M, Watkins A N. Addition of Silica-Coated Ag Nanoparticles to Enhance Luminescence Intensity of Pressure-Sensitive Paints[J]. ACS Applied Nano Materials,2020,3(10):9813-9821.

    [24] [24] Wang M L, Wang M,Zheng G H, et al. Recent progress in sensing application of metal nanoarchitecture-enhanced fluorescence[J]. Nanoscale Advances,2021,3:2448-2465.

    [27] [27] Dragan A I, Bishop E S, Casas-Finet J R, et al. Distance Dependence of Metal-Enhanced Fluorescence[J]. Plasmonics,2012,7:739–744.

    [28] [28] Lakowicz J R. Radiative Decay Engineering: Biophysical and Biomedical Applications[J]. Analytical Biochemistry,2001,298(1):1-24.

    [29] [29] Wang Y H, Zhou J, Shi S K. Enhancing and quenching effect of silvernanoparticles on the fluorescein fluorescence and quenching release by KCI[J]. Chinese Journal of Inorganic Chemistry,2006,22(9):1579-1584.

    [30] [30] Bush J C, Cook J P, Cooke K K, et al. Characterization of thePlasmonic Fluorescence Enhancement of Poly (3-hexylthiophene) for Organic Solar Cell Applications[J]. Spectroscopy Letters,2015,48(2):144-152.

    [32] [32] Schalkhammer T, Aussenegg F R, Leitner A, et al. Detection of fluorophore-labeled antibodies by surface-enhanced fluorescence on metal nanoislands[P]. Photonics West - Biomedical Optics,1997.

    [33] [33] Subr M, Praus P, Kuzminova A, et al. Magnetron-Sputtered Polytetrafluoroethylene-Stabilized Silver Nanoisland Surface for Surface-Enhanced Fluorescence[J]. Nanomaterials,2020,10(4):773.

    [34] [34] Jung Y J, Kim J, Kim N H, et al. Ag–ZnO Nanocomposites as a 3D Metal-Enhanced Fluorescence Substrate for the Fluorescence Detection of DNA[J]. ACS Applied Nano Materials,2023,6(2):976-985.

    [35] [35] Kaja S, Damera D P, Nag A. A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium[J]. Analytica Chimica Acta,2020,1129:12-23.

    [36] [36] Li C Y, Zhu J F. Metal-enhanced fluorescence of OG-488 doped in Au@SiO2 core–shell nanoparticles[J]. Materials Letters,2013,112:169-172.

    [37] [37] Yang J P, Zhang F, Chen Y R, et al. Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence[J]. Chemical Communications,2011,47:11618-11620.

    [38] [38] Zhang Y J,Radjenovic P M, Zhou X S, et al. Plasmonic Core–Shell Nanomaterials and their Applications in Spectroscopies[J]. Advanced Materials,2021,33:2005900.

    [40] [40] Dong L, Liu B,Maenosono S, et al. Multifunctional Au@Ag@SiO2 Core–Shell–Shell Nanoparticles for Metal-Enhanced Fluorescence, Surface-Enhanced Raman Scattering, and Photocatalysis Applications[J]. Langmuir,2023,39(4):1593-1599.

    [41] [41] Szczepańska E, Synak A, Bojarski P, et al. Dansyl-Labelled Ag@SiO2 Core-Shell Nanostructures-Synthesis, Characterization, and Metal-Enhanced Fluorescence[J]. Materials,2020,13(22):5168.

    [42] [42] Manivannan K, Cheng C C, Anbazhagan R, et al. Fabrication of silver seeds and nanoparticle on core-shell Ag@SiO2 nanohybrids for combined photothermal therapy and bioimaging[J]. Journal of Colloid and Interface Science,2019,537:604-614.

    [43] [43] Rajbongshi H, Sarkar A, Phukan P, et al. Ultrasensitive fluorescence detection of Fe3+ ions using fluorescein isothiocyanate functionalized Ag/SiO2/SiO2 core–shell nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2019,30:5580-5597.

    [44] [44] Zeng Q H, Zhang Y L, Liu X M, et al. Au/SiO2 core/shell nanoparticles enhancing fluorescence resonance energy transfer efficiency in solution[J]. Chemical Communications,2010,46:6479-6481.

    [45] [45] Aslan K, Wu M, Lakowicz J R, et al. Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs[J]. Journal of Fluorescence,2007,17:127-131.

    [46] [46] Yun B J, Kwon J E, Lee K, et al. Highly sensitive metal-enhanced fluorescence biosensor prepared on electrospun fibers decorated with silica-coated silver nanoparticles[J]. Sensors and Actuators B: Chemical,2019,284:140-147.

    [47] [47] Szczepanska Z, Synak A, Bojarski P, et al. Dansyl-Labelled Ag@SiO2 Core-Shell Nanostructures-Synthesis, Characterization, and Metal-Enhanced Fluorescence[J]. Materials,2020,13(22):5168.

    [48] [48] Chen J W, Wang K, Wu K, et al. Optimization of metal-enhanced fluorescence by different concentrations of gold-silica core–shellnanoparticles[J]. Optics Communications,2015,349:180-184.

    [49] [49] Wei Y, Li L, Sun D X, et al. The effect of silica shell on the surface enhanced Raman scattering and fluorescence with Agnanoparticles: A three-dimensional finite element method investigation[J]. Optics Communications,2018,427:426-432

    [51] [51] Cheng Z H, Li G, Liu M M, Metal-enhanced fluorescence effect of Ag and Aunanoparticles modified with rhodamine derivative in detecting Hg2+[J]. Sensors and Actuators B: Chemical,2015,212:495-504.

    [52] [52] Sittisart P, Locharoenrat K. Use of Ag-Au-ICG to increase fluorescence image of human hepatocellular carcinoma cell lines[J]. Artificial Cells, Nanomedicine, and Biotechnology,2023,51(1):139-147.

    [53] [53] Zhang C Y, Zhang T T, Zhang Z L, et al. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO2 Core-Shell Nanostructure[J]. Frontiers in Chemistry,2019,7:2296-2646.

    [54] [54] Bian X, Zhang G, Liu B, et al. One-pot synthesis of Au/Ag alloy@SiO2 core–shell nanoparticles and their metal-enhanced fluorescence and surface-enhanced Raman scattering spectroscopies[J]. Journal of Nanoparticle Research,2022,24:20.

    [55] [55] Bishnoi S, Das R, Chawla S. Gold nanosphere enhanced green and red fluorescence in ZnO: Al, Eu3+[J]. Applied Physics Letters,2014,105(23):233108.

    [56] [56] Chae W S, Yun J, Nam S H, et al. Fluorescence Modulation of Graphene Quantum Dots Near Structured Silver Nanofilms[J]. ACS Applied Materials & Interfaces,2018,10(16),14079-14086.

    [57] [57] Zhao Y, Ding Y,Peng X, et al. The structure, morphology, and the metal-enhanced fluorescence of nano-Ag/ZnO core–shell structure[J]. Applied Nanoscience,2015,5:521-525.

    [58] [58] Chung F C, Zhu Z,Luo P Y, et al. Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature[J]. Sensors and Actuators B: Chemical,2014,199:314-319.

    [59] [59] Sun S,Rasskazov I L, Carney P S, et al. Critical Role of Shell in Enhanced Fluorescence of Metal–Dielectric Core–Shell Nanoparticles[J]. The Journal of Physical Chemistry C,2020,124(24):13365-13373.

    [61] [61] Du P, Cao Y H, Li D, et al. Synthesis of thermally stable Ag@TiO2 core–shell nanoprisms and plasmon–enhanced optical properties for a P3HT thin film[J]. RSC Advances,2013,3:6016-6021.

    [62] [62] Oliveira G P,Neves T B V, Peixoto L P F, et al. Synthesis and Characterization of Au@MnO2 Nanoparticles as Plasmon Enhanced Spectroscopy Substrates[J]. Journal of The Brazilian Chemical Society,2023,34(6):778-784.

    [63] [63] Pyne S, Sahoo G P, Bhui D K, et al. Enhanced photocatalytic activity of metal coated ZnO nanowires[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2012,93:100-105.

    [64] [64] Wang Y J,Zu X H, Yi G B, et al. Gap-plasmon of Fe3O4@Ag core-shell nanostructures for highly enhanced fluorescence detection of Rhodamine B. J. Wuhan Univ[J]. Journal of Wuhan University of Technology-Materials Science Edition,2017,32:264-271.

    [67] [67] Xu D D, Zheng B, Song C Y, et al. Metal-enhanced fluorescence of gold nanoclusters as a sensing platform for multi-component detection[J]. Sensors and Actuators B: Chemical,2019,282:650-658.

    [68] [68] Niu P H, Liu B C, Li Y J, et al. CdTe@SiO2/Ag nanocomposites as antibacterial fluorescent markers for enhanced latent fingerprint detection[J]. Dyes and Pigments,2015,119:1-11.

    [69] [69] Jung D W, Kim J M,Yun H J, et al. Understanding metal-enhanced fluorescence and structural properties in Au@Ag core–shell nanocubes[J]. RSC Advances,2019,9:29232-29237.

    [73] [73] Guo M, Liu P P, Huang B X, et al. Hierarchical assembly of silver and gold nanoparticles in two-dimension: Toward fluorescence enhanced detection platforms[J]. Applied Surface Science,2019,476:1072-1078.

    Tools

    Get Citation

    Copy Citation Text

    GUO Shu, WANG Mingli. Research progress of core-shell structure in surface enhanced fluorescence[J]. The Journal of Light Scattering, 2023, 35(4): 339

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 25, 2023

    Accepted: --

    Published Online: Jul. 23, 2024

    The Author Email:

    DOI:10.13883/j.issn1004-5929.202304003

    Topics