Acta Optica Sinica, Volume. 42, Issue 10, 1014002(2022)

Numerical Analysis of All-Fiber Passively Q-Switched Laser at 2.8 μm Mid-Infrared Region

Rui Wang1,2, Junxiang Zhang1,2, Quan Sheng1,2, Shijie Fu1,2, Wei Shi1,2、*, and Jianquan Yao1,2
Author Affiliations
  • 1Institute of Laser and Opto-Electronics, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • show less
    References(31)

    [1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [2] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 30-40(2001).

    [3] Dong W Q, Hao Q, Huang K et al. Single-pass optical parameter mid-infrared ultra-short pulse laser system based on all polarization-maintaining fiber laser[J]. Acta Optica Sinica, 41, 1236001(2021).

    [4] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [5] Shen Y L, Huang K, Zhou S Q et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese Journal of Lasers, 42, 0502008(2015).

    [6] Aydin Y O, Fortin V, Maes F et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency[J]. Optica, 4, 235-238(2017).

    [7] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [8] Gu H A, Qin Z P, Xie G Q et al. Generation of 131 fs mode-locked pulses from 2.8 μm Er∶ZBLAN fiber laser[J]. Chinese Optics Letters, 18, 031402(2020).

    [9] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).

    [10] Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 40, 4855-4858(2015).

    [11] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).

    [12] Bawden N, Matsukuma H, Henderson-Sapir O et al. Actively Q-switched dual-wavelength pumped Er 3+∶ZBLAN fiber laser at 3.47 μm[J]. Optics Letters, 43, 2724-2727(2018).

    [13] Hu T, Hudson D D, Jackson S D. Actively Q-switched 2.9 μm Ho 3+Pr 3+-doped fluoride fiber laser[J]. Optics Letters, 37, 2145-2147(2012).

    [14] Shen Y L, Wang Y S, Zhu F et al. 200 μJ, 13 ns Er∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 46, 1141-1144(2021).

    [15] Shen Y L, Wang Y S, Luan K P et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 123, 105(2017).

    [16] Shen Y L, Wang Y S, Luan K P et al. Watt-level passively Q-switched heavily Er 3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 6, 26659(2016).

    [17] Wei C, Zhu X S, Norwood R A et al. Passively Q-switched 2.8-μm nanosecond fiber laser[J]. IEEE Photonics Technology Letters, 24, 1741-1744(2012).

    [18] Ning S G, Feng G Y, Dai S Y et al. Mid-infrared Fe 2+∶ZnSe semiconductor saturable absorber mirror for passively Q-switched Er 3+-doped ZBLAN fiber laser[J]. AIP Advances, 8, 025121(2018).

    [19] Wei C, Zhu X S, Wang F et al. Graphene Q-switched 2.78 μm Er 3+-doped fluoride fiber laser[J]. Optics Letters, 38, 3233-3236(2013).

    [20] Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 23, 24713-24718(2015).

    [21] Wei C, Zhou L Q, Wang D S et al. MXene-Ti3C2Tx for watt-level high-efficiency pulse generation in a 2.8 μm mid-infrared fiber laser[J]. Photonics Research, 8, 972-977(2020).

    [22] Boguslawski J, Sobon G, Zybala R et al. Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator[J]. Optics Letters, 40, 2786-2789(2015).

    [23] Adel P, Auerbach M, Fallnich C et al. Passive Q-switching by Tm 3+co-doping of a Yb 3+-fiber laser[J]. Optics Express, 11, 2730-2735(2003).

    [24] Kurkov A S. Q-switched all-fiber lasers with saturable absorbers[J]. Laser Physics Letters, 8, 335-342(2011).

    [25] Tao M M, Ye X S, Wang F et al. Modeling and analysis of a pulsed Er-Tm fiber laser system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 37-43(2015).

    [26] Jackson S D, King T A, Pollnau M. Modelling of high-power diode-pumped erbium 3 μm fibre lasers[J]. Journal of Modern Optics, 47, 1987-1994(2000).

    [27] Li J F, Jackson S D. Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers[J]. IEEE Journal of Quantum Electronics, 48, 454-464(2012).

    [28] Luan K P, Shen Y L, Tao M M et al. Numerical simulation of 2.8 μm gain-switched Er∶ZBLAN fiber laser[J]. Acta Optica Sinica, 39, 0714001(2019).

    [29] Woodward R I, Majewski M R. MacAdam N, et al. Q-switched Dy∶ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus[J]. Optics Express, 27, 15032-15045(2019).

    [30] Wang B, Cheng L H, Zhong H Y et al. Excited state absorption cross sections of 4I13/2 of Er 3+ in ZBLAN[J]. Optical Materials, 31, 1658-1662(2009).

    [31] Dvoyrin V V, Mashinsky V M, Dianov E M. Yb-Bi pulsed fiber lasers[J]. Optics Letters, 32, 451-453(2007).

    Tools

    Get Citation

    Copy Citation Text

    Rui Wang, Junxiang Zhang, Quan Sheng, Shijie Fu, Wei Shi, Jianquan Yao. Numerical Analysis of All-Fiber Passively Q-Switched Laser at 2.8 μm Mid-Infrared Region[J]. Acta Optica Sinica, 2022, 42(10): 1014002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 3, 2021

    Accepted: Dec. 7, 2021

    Published Online: May. 10, 2022

    The Author Email: Shi Wei (shiwei@tju.edu.cn)

    DOI:10.3788/AOS202242.1014002

    Topics