Chinese Journal of Lasers, Volume. 48, Issue 5, 0501001(2021)
Progresses and Trends in Attosecond Optics
[1] McPherson A, Gibson G, Jara H et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 4, 595-601(1987).
[2] Ferray M, L'Huillier A, Li X F et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 21, L31-L35(1988).
[3] Farkas G, Tóth C. Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases[J]. Physics Letters A, 168, 447-450(1992).
[4] Harris S E, Macklin J J, Hänsch T W. Atomic scale temporal structure inherent to high-order harmonic generation[J]. Optics Communications, 100, 487-490(1993).
[5] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).
[6] Paul P M, Toma E S, Breger P et al. Observation of atrain of attosecond pulses from high harmonic generation[J]. Science, 292, 1689-1692(2001).
[7] Schultze M, Fiess M, Karpowicz N et al. Delay in photoemission[J]. Science, 328, 1658-1662(2010).
[8] Klünder K, Dahlström J M, Gisselbrecht M et al. Probing single-photon ionization on the attosecond time scale[J]. Physical Review Letters, 106, 169904(2011).
[9] Nandi S, Plésiat E, Zhong S et al. Attosecond timing of electron emission from a molecular shape resonance[J]. Science Advances, 6, eaba7762(2020).
[10] Cavalieri A L, Müller N, Uphues T et al. Attosecond spectroscopy in condensed matter[J]. Nature, 449, 1029-1032(2007).
[11] Locher R, Castiglioni L, Lucchini M et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry[J]. Optica, 2, 405-410(2015).
[12] Gruson V, Barreau L et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron[J]. Science, 354, 734-738(2016).
[13] Cirelli C, Marante C, Heuser S et al. Anisotropic photoemission time delays close to a Fano resonance[J]. Nature Communications, 9, 955(2018).
[14] Drescher M, Hentschel M, Kienberger R et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 419, 803-807(2002).
[15] Zhong S Y, Vinbladh J, Busto D et al. Attosecond electron-spin dynamics in Xe 4d photoionization[J]. Nature Communications, 11, 5042(2020).
[16] Calegari F, Ayuso D, Trabattoni A et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 346, 336-339(2014).
[17] Burt M, Boll R. Lee J W L, et al. Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics[J]. Physical Review A, 96, 043415(2017).
[18] Schultze M, Bothschafter E M, Sommer A et al. Controlling dielectrics with the electric field of light[J]. Nature, 493, 75-78(2013).
[19] Li J, Ren X, Yin Y et al. Erratum: 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 8, 186(2017).
[20] Gaumnitz T, Jain A, Pertot Y et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 25, 27506-27518(2017).
[21] Lan P F, Lu P X, Cao W et al. Isolated sub-100-as pulse generation via controlling electron dynamics[J]. Physical Review A, 76, 011402(2007).
[22] Zeng Z N, Cheng Y, Song X H et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field[J]. Physical Review Letters, 98, 203901(2007).
[23] Zhong S Y, He X K, Jiang Y J et al. Noncollinear gating for high-flux isolated-attosecond-pulse generation[J]. Physical Review A, 93, 033854(2016).
[24] Wei P, Miao J, Zeng Z et al. Selective enhancement of a single harmonic emission[J]. Bulletin of the Chinese Academy of Sciences, 27, 201(2013).
[25] Wang L, Xue J X, Zeng Z N et al. Generation of resonantly enhanced monochromatic high-order harmonics[J]. Chinese Journal of Lasers, 46, 1001003(2019).
[26] Ye P, He X K, Teng H et al. Full quantum trajectories resolved high-order harmonic generation[J]. Physical Review Letters, 113, 073601(2014).
[27] Du M W, Liu C D, Zheng Y H et al. Attosecond transient-absorption spectroscopy in one-dimensional periodic crystals[J]. Physical Review A, 100, 043840(2019).
[28] Zhang Y, Yang F, Liu C D et al. Quantum path interference in attosecond transient absorption of H2+[J]. Chinese Journal of Lasers, 47, 0801004(2020).
[29] Xu M H, Peng L Y, Zhang Z et al. Attosecond streaking in the low-energy region as a probe of rescattering[J]. Physical Review Letters, 107, 183001(2011).
[30] Ning Q C, Peng L Y, Song S N et al. Attosecond streaking of Cohen-Fano interferences in the photoionizationof H2+[J]. Physical Review A, 90, 013423(2014).
[31] Zhan M J, Ye P, Teng H et al. Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV[J]. Chinese Physics Letters, 30, 093201(2013).
[32] Teng H, He X K, Zhao K et al. Attosecond laser station[J]. Chinese Physics B, 27, 074203(2018).
[33] Yang Z, Cao W, Chen X et al. All-optical frequency-resolved optical gating for isolated attosecond pulse reconstruction[J]. Optics Letters, 45, 567-570(2020).
[34] Wang X W, Wang L, Xiao F et al. Generation of 88 as isolated attosecond pulses with double optical gating[J]. Chinese Physics Letters, 37, 023201(2020).
[35] Wang X L, Xu P, Li J et al. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera[J]. Chinese Journal of Lasers, 47, 0415002(2020).
[36] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994(1993).
[37] Schafer K J, Yang B R. DiMauro L F, et al. Above threshold ionization beyond the high harmonic cutoff[J]. Physical Review Letters, 70, 1599-1602(1993).
[38] Arnold C L, Isinger M, Busto D et al. How can attosecond pulse train interferometry interrogate electron dynamics?[J]. Photoniques, 28-35(2018).
[39] Sekikawa T, Kosuge A, Kanai T et al. Nonlinear optics in the extreme ultraviolet[J]. Nature, 432, 605-608(2004).
[40] Manschwetus B, Rading L, Campi F et al. Two-photon double ionization of neon using an intense attosecond pulse train[J]. Physical Review A, 93, 061402(2016).
[41] Ravasio A, Gauthier D, Maia F R et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 103, 028104(2009).
[42] Tzallas P, Skantzakis E. Nikolopoulos L A A, et al. Extreme-ultraviolet pump-probe studies of one-femtosecond-scale electron dynamics[J]. Nature Physics, 7, 781-784(2011).
[43] Rudawski P, Heyl C M, Brizuela F et al. A high-flux high-order harmonic source[J]. Review of Scientific Instruments, 84, 073103(2013).
[44] Constant E, Garzella D, Breger P et al. Optimizing high harmonic generation in absorbing gases: model and experiment[J]. Physical Review Letters, 82, 1668-1671(1999).
[45] Balcou P. Sali`eres P, L'Huillier A, et al. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces[J]. Physical Review A, 55, 3204-3210(1997).
[46] Gaarde M B, Tate J L, Schafer K J. Macroscopic aspects of attosecond pulse generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 41, 132001(2008).
[47] Heyl C M, Coudert-Alteirac H, Miranda M et al. Scale-invariant nonlinear optics in gases[J]. Optica, 3, 75-81(2016).
[48] Heyl C M, Arnold C L, Couairon A et al. Introduction to macroscopic power scaling principles for high-order harmonic generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 50, 013001(2017).
[49] Hergott J F, Kovacev M, Merdji H et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range[J]. Physical Review A, 66, 021801(2002).
[50] Takahashi E, Nabekawa Y, Otsuka T et al. Generation of highly coherent submicrojoule soft x rays by high-order harmonics[J]. Physical Review A, 66, 021802(2002).
[51] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics[J]. Optics Letters, 27, 1920-1922(2002).
[52] Tzallas P, Charalambidis D, Papadogiannis N A et al. Direct observation of attosecond light bunching[J]. Nature, 426, 267-271(2003).
[53] Dacasa H, Coudert-Alteirac H, Guo C et al. Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics[J]. Optics Express, 27, 2656-2670(2019).
[54] Yoshitomi D, Nees J, Miyamoto N et al. Phase-matched enhancements of high-harmonic soft X-rays by adaptive wave-front control with a genetic algorithm[J]. Applied Physics B, 78, 275-280(2004).
[55] Takahashi E J, Nabekawa Y, Mashiko H et al. Generation of strong optical field in soft X-ray region by using high-order harmonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1315-1328(2004).
[56] Wang Y, Guo T Y, Li J L et al. Enhanced high-order harmonic generation driven by a wavefront corrected high-energy laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 134005(2018).
[57] Nayak A, Orfanos I, Makos I et al. Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses[J]. Physical Review A, 98, 023426(2018).
[58] Senfftleben B, Kretschmar M, Hoffmann A et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses[J]. Journal of Physics: Photonics, 2, 034001(2020).
[59] Maclot S, Lahl J, Peschel J et al. Dissociation dynamics of the diamondoid adamantane upon photoionization by XUV femtosecond pulses[J]. Scientific Reports, 10, 1-12(2020).
[60] Kühn S, Dumergue M, Kahaly S et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 50, 132002(2017).
[61] Seres J, Yakovlev V S, Seres E et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources[J]. Nature Physics, 3, 878-883(2007).
[62] Willner A, Tavella F, Yeung M et al. Coherent control of high harmonic generation via dual-gas multijet arrays[J]. Physical Review Letters, 107, 175002(2011).
[63] Sola I J, Mével E, Elouga L et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating[J]. Nature Physics, 2, 319-322(2006).
[64] Ferrari F, Calegari F, Lucchini M et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields[J]. Nature Photonics, 4, 875-879(2010).
[65] Chang Z H. Controlling attosecond pulse generation with a double optical gating[J]. Physical Review A, 76, 051403(2007).
[67] Wei Z Y, Xu S Y, Jiang Y J et al. Progress on technology and principle of attosecond laser pulse generation[J]. Chinese Science Bulletin, 66, 1-1(2021).
[68] Kaku M, Oishi Y, Suda A et al. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field[J]. Optics Express, 14, 7230-7237(2006).
[69] Mashiko H, Gilbertson S, Li C Q et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers[J]. Physical Review Letters, 100, 103906(2008).
[70] Haessler S, Balčiŭnas T, Fan G et al. Optimization of quantum trajectories driven by strong-field waveforms[C]. //Ultrafast Phenomena XIX, 72-77(2015).
[71] Jin C, Wang G, Wei H et al. Waveforms for optimal sub-keV high-order harmonics with synthesized two-or three-colour laser fields[J]. Nature Communications, 5, 4003(2014).
[72] Jin C, Hong K H, Lin C D. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses[J]. Scientific Reports, 6, 38165(2016).
[73] Lan P F, Takahashi E J, Midorikawa K. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation[J]. Physical Review A, 82, 053413(2010).
[74] Takahashi E J, Lan P F, Mücke O D et al. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse[J]. Physical Review Letters, 104, 233901(2010).
[75] Takahashi E J, Lan P, Mücke O D et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 4, 2691(2013).
[76] Xue B, Tamaru Y, Fu Y X et al. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses[J]. Science Advances, 6, eaay2802(2020).
[77] Matía-Hernando P, Witting T, Walke D J et al. Enhanced attosecond pulse generation in the vacuum ultraviolet using a two-colour driving field for high harmonic generation[J]. Journal of Modern Optics, 65, 737-744(2018).
[78] Greening D, Weaver B, Pettipher A J et al. Generation and measurement of isolated attosecond pulses with enhanced flux using a two colour synthesized laser field[J]. Optics Express, 28, 23329-23337(2020).
[79] Wirth A, Hassan M T, Grguras I et al. Synthesized light transients[J]. Science, 334, 195-200(2011).
[80] Rossi G M, Mainz R E, Yang Y D et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nature Photonics, 14, 629-635(2020).
[81] Hassan M T, Wirth A, Grguraš I et al. Attosecond photonics: synthesis and control of light transients[J]. The Review of Scientific Instruments, 83, 111301(2012).
[82] Shan B, Chang Z H. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field[J]. Physical Review A, 65, 011804(2001).
[83] Chen M C, Arpin P, Popmintchev T et al. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source[J]. Physical Review Letters, 105, 173901(2010).
[84] Hong K H, Huang S W, Moses J et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 21 μm pumped by a picosecond cryogenic Yb: YAG laser[J]. Optics Express, 19, 15538(2011).
[85] Shiner A D, Trallero-Herrero C, Kajumba N et al. Wavelength scaling of high harmonic generation efficiency[J]. Physical Review Letters, 103, 073902(2009).
[86] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).
[87] Teichmann S M, Silva F, Cousin S L et al. 0. 5 keV soft X-ray attosecond continua[J]. Nature Communications, 7, 11493(2016).
[88] Johnson A S, Austin D R, Wood D A et al. High-flux soft X-ray harmonic generation from ionization-shaped few-cycle laser pulses[J]. Science Advances, 4, eaar3761(2018).
[89] Colosimo P, Doumy G, Blaga C I et al. Scaling strong-field interactions towards the classical limit[J]. Nature Physics, 4, 386-389(2008).
[90] Saito N, Ishii N, Kanai T et al. Attosecond streaking measurement of extreme ultraviolet pulses using a long-wavelength electric field[J]. Scientific Reports, 6, 35594(2016).
[91] Cousin S L, di Palo N, Buades B et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization[J]. Physical Review X, 7, 041030(2017).
[92] Koralek J D, Douglas J F, Plumb N C et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ[J]. Physical Review Letters, 96, 017005(2006).
[93] Dörner R, Mergel V, Jagutzki O et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics[J]. Physics Reports, 330, 95-192(2000).
[94] Damascelli A, Hussain Z, Shen Z X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 75, 473-541(2003).
[95] Wernet P, Gaudin J, Godehusen K et al. Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation[J]. The Review of Scientific Instruments, 82, 063114(2011).
[96] Niu Y, Liu F Y, Liu Y et al. Pressure-dependent phase matching for high harmonic generation of Ar and N2 in the tight focusing regime[J]. Optics Communications, 397, 118-121(2017).
[97] Heyl C M, Güdde J, L’Huillier A et al. High-order harmonic generation with μJ laser pulses at high repetition rates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074020(2012).
[98] Hädrich S, Krebs M, Rothhardt J et al. Generation of μW level plateau harmonics at high repetition rate[J]. Optics Express, 19, 19374-19383(2011).
[99] Vernaleken A, Weitenberg J, Sartorius T et al. Single-pass high-harmonic generation at 20. 8 MHz repetition rate[J]. Optics Letters, 36, 3428-3430(2011).
[100] Rothhardt J, Krebs M, Hädrich S et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime[J]. New Journal of Physics, 16, 033022(2014).
[101] Cirmi G, Lai C J, Huang S W et al. Tunable high harmonic generation driven by a visible optical parametric amplifier[J]. EPJ Web of Conferences, 41, 01002(2013).
[102] Russbueldt P, Mans T, Rotarius G et al. 400 W Yb∶YAG innoslab fs-amplifier[J]. Optics Express, 17, 12230-12245(2009).
[103] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).
[104] Saraceno C, Schriber C, Emaury F et al. Cutting-edge high-power ultrafast thin disk oscillators[J]. Applied Sciences, 3, 355-395(2013).
[105] Wang H, Xu Y, Ulonska S et al. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV[J]. Nature Communications, 6, 7459(2015).
[106] Comby A, Descamps D, Beauvarlet S et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source[J]. Optics Express, 27, 20383-20396(2019).
[107] Klas R, Kirsche A, Gebhardt M et al. Ultra-short-pulse high-average-power Megahertz-repetition-rate coherent extreme-ultraviolet light source[EB/OL]. (2020-12-21)[2021-01-20]. https: //arxiv. org/abs/2012. 11244.
[108] Sabbar M, Heuser S, Boge R et al. Combining attosecond XUV pulses with coincidence spectroscopy[J]. The Review of Scientific Instruments, 85, 103113(2014).
[109] Hammerland D, Zhang P, Kühn S, Optical Physics et al. 52(23): 23LT01(2019).
[110] Ye P, Csizmadia T, Oldal L G et al. Attosecond pulse generation at ELI-ALPS 100 kHz repetition rate beamline[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 154004(2020).
[111] Witting T, Furch F, Osolodkov M et al. Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate[J]. Journal of Physics: Conference Series, 1412, 072031(2020).
[112] Kern C, Zürch M, Spielmann C. Limitations of extreme nonlinear ultrafast nanophotonics[J]. Nanophotonics, 4, 303-323(2015).
[113] Mills A K, Hammond T J. Lam M H C, et al. XUV frequency combs via femtosecond enhancement cavities[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 142001(2012).
[114] Porat G, Heyl C M, Schoun S B et al. Phase-matched extreme-ultraviolet frequency-comb generation[J]. Nature Photonics, 12, 387-391(2018).
[115] Faisal F H M, Kamiński J Z. Floquet-Bloch theory of high-harmonic generation in periodic structures[J]. Physical Review A, 56, 748-762(1997).
[116] Golde D, Meier T, Koch S W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations[J]. Physical Review B, 77, 075330(2008).
[117] Ghimire S, DiChiara A D, Sistrunk E et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 7, 138-141(2011).
[118] Vampa G, McDonald C R, Orlando G et al. Theoretical analysis of high-harmonic generation in solids[J]. Physical Review Letters, 113, 073901(2014).
[119] Vampa G, Hammond T J, Thiré N et al. Linking high harmonics from gases and solids[J]. Nature, 522, 462-464(2015).
[120] Vampa G, Hammond T J, Thiré N et al. All-optical reconstruction of crystal band structure[J]. Physical Review Letters, 115, 193603(2015).
[121] Lanin A, Stepanov E A, Fedotov A B et al. Mapping the electron band structure by intraband high-harmonic generation in solids[J]. Optica, 4, 516-519(2017).
[122] Lakhotia H, Kim H Y, Zhan M et al. Laser picoscopy of valence electrons in solids[J]. Nature, 583, 55-59(2020).
Get Citation
Copy Citation Text
Zhiyi Wei, Shiyang Zhong, Xinkui He, Kun Zhao, Hao Teng, Shuai Wang, Yueying Liang, Ji Wang, Suyu Yu, Yunlin Chen, Jiangfeng Zhu. Progresses and Trends in Attosecond Optics[J]. Chinese Journal of Lasers, 2021, 48(5): 0501001
Category: laser devices and laser physics
Received: Jan. 20, 2021
Accepted: Feb. 22, 2021
Published Online: Mar. 10, 2021
The Author Email: Wei Zhiyi (zywei@iphy.ac.cn)