Journal of Inorganic Materials, Volume. 34, Issue 3, 294(2019)
Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach
[1] DRESSELHAUS·M S, THOMAS I L. Alternative energy technologies[D]. Nature, 414, 332-337(2001).
[2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[D]. Nature, 488, 294-303(2012).
[3] ARMSTRONG R C, DE JONG K P, WOLFRAM C et al. The frontiers of energy[D]. Nat. Energy, 1, 15020(2016).
[4] HAUTIER G, SCHMITT J, ZEIER W G et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry[D]. Nat. Rev. Mater., 1, 1-10(2016).
[5] FERNANDEZ J F, MOURE A, RULL-BRAVO M et al. Skutterudites as thermoelectric materials: revisited[D]. RSC Adv., 5, 41653-41667(2015).
[6] LONG B D, OVIK R et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery[D]. Renewable Sustainable Energy Rev., 64, 635-659(2016).
[7] CHUNG D Y, KANATZIDIS·M G, SOOTSMAN J R. New and old concepts in thermoelectric materials[D]. Angew. Chem. Int. Ed., 48, 8616-8639(2009).
[8] LI K, LI Z, XIAO C et al. Decoupling interrelated parameters for designing high performance thermoelectric materials[D]. Acc. Chem. Res., 47, 1287-1295(2014).
[9] URBAN J J. Prospects for thermoelectricity in quantum dot hybrid arrays[D]. Nat. Nanotechnol., 10, 997-1001(2015).
[10] BEEKMAN M, MORELLI D T, NOLAS G S. Better thermoelectrics through glass-like crystals[D]. Nat. Mater., 14, 1182-1185(2015).
[11] SNYDER G J, TOBERER E S. Complex thermoelectric materials[D]. Nat. Mater., 7, 105-114(2008).
[12] KANATZIDIS·M G, TAN G, ZHAO L D. Rationally designing high-performance bulk thermoelectric materials[D]. Chem. Rev., 116, 12123-12149(2016).
[13] DRESSELHAUS·M S, HICKS L D. Effect of quantum-well structures on the thermoelectric figure of merit[D]. Phys. Rev. B, 47, 12727-12731(1993).
[14] KIM S W, MUNE Y, OHTA H et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3[D]. Nat. Mater., 6, 129-134(2007).
[15] CHENG H, GAO S, SUN Y et al. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting[D]. J. Am. Chem. Soc., 134, 20294-20297(2012).
[16] LIU Y, LIU Y, ZHAO L D et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[D]. J. Am. Chem. Soc., 133, 20112-20115(2011).
[17] CHANG C, ZHANG X, ZHOU Y et al. BiCuSeO thermoelectrics: an update on recent progress and perspective[D]. Materials, 10, 198(2017).
[18] BERARDAN D, HE J, ZHAO L D et al. BiCuSeO oxyselenides: new promising thermoelectric materials[D]. Energy Environ. Sci., 7, 2900-2924(2014).
[19] LI J, PEI Y, SUI J et al. A high thermoelectric figure of merit
[20] FAN S, LI Z, XIAO C et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[D]. J. Am. Chem. Soc., 137, 6587-6593(2015).
[21] LIU Y, ZHAO L D, ZHU Y et al. Synergistically optimizing electrical. Synergistically optimizing electrical and thermal transport properties of BiCuSeO
[22] HEREMANS J P, JOVOVIC V, TOBERER E S et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[D]. Science, 321, 554-557(2008).
[23] CAO B, XIAO C, XU J et al. Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward “phonon glass electron crystal” thermoelectric materials[D]. J. Am. Chem. Soc., 134, 7971-7977(2012).
[24] WU H J, ZHAO L D, ZHENG F S et al. Broad temperature plateau for thermoelectric figure of merit
[25] WU H, ZHANG X, ZHAO L D et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe[D]. J. Am. Chem. Soc., 138, 2366-2373(2016).
[26] BARTKOWIAK M, MAHAN G D. Wiedemann-Franz law at boundaries[D]. Appl. Phys. Lett., 74, 953-954(1999).
[27] DING J, LIU Y, XU B et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure[D]. Appl. Phys. Lett., 106, 1-5(2015).
[28] LALONDE A, PEI Y, SHI X et al. Convergence of electronic bands for high performance bulk thermoelectrics[D]. Nature, 473, 66-69(2011).
[29] ANAND S, BANIK A, SHENOY U S et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties[D]. Chem. Mater., 27, 581-587(2015).
[30] HAO S, SHI F, TAN G et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence[D]. J. Am. Chem. Soc., 137, 5100-5112(2015).
Get Citation
Copy Citation Text
Zhou LI, Chong XIAO, [in Chinese], [in Chinese]. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach[J]. Journal of Inorganic Materials, 2019, 34(3): 294
Category: Research Articles
Received: Jul. 4, 2018
Accepted: --
Published Online: Sep. 26, 2021
The Author Email: