Optics and Precision Engineering, Volume. 32, Issue 23, 3504(2024)
Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer
[1] YAN J W, CHEN H D, LIU L. Overview of hyperspectral image classification[J]. Opt. Precision Eng., 27, 680-693(2019).
闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程, 27, 680-693(2019).
[2] LI Y, ZHANG H K, XUE X Z et al. Deep learning for remote sensing image classification: a survey[J]. WIREs Data Mining and Knowledge Discovery, 8(2018).
[3] ZHANG D, ZHENG Y Q. Hyperspectral remote sensing and its development and application review[J]. Optics & Optoelectronic Technology, 11, 67-73(2013).
张达, 郑玉权. 高光谱遥感的发展与应用[J]. 光学与光电技术, 11, 67-73(2013).
[4] 黄鸿, 郑新磊. 加权空-谱与最近邻分类器相结合的高光谱图像分类[J]. 光学 精密工程, 24, 873-881(2016).
HUANG H, ZHENG X L. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Opt. Precision Eng., 24, 873-881(2016).
[5] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 101, 652-675(2013).
[6] CHEN Y S, JIANG H L, LI C Y et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251(2016).
[7] LI Y, ZHANG H K, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 9, 67(2017).
[8] LIU Z, MAO H Z, WU C Y et al. A ConvNet for the 2020s[C], 18, 11976-11986(2022).
[9] ZHANG H K, LI Y, JIANG Y N et al. Hyperspectral classification based on lightweight 3-D-CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 5813-5828(2019).
[10] DOSOVITSKIY A. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint(2020).
[11] HONG D F, HAN Z, YAO J et al. SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).
[12] AYAS S, TUNC-GORMUS E. SpectralSWIN: a spectral-swin transformer network for hyperspectral image classification[J]. International Journal of Remote Sensing, 43, 4025-4044(2022).
[15] ZHANG H K, HU W Z, WANG X Y.
[16] SUN L, ZHAO G R, ZHENG Y H et al. Spectral-spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 3144158(2022).
[17] BAUMGARDNER M, BIEHL L, LANDGREBE D. 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian pine test site 3[J]. Purdue University Research Repository, 10, 991(2015).
[18] LICCIARDI G, PACIFICI F, TUIA D et al. Decision fusion for the classification of hyperspectral data: outcome of the 2008 GRS-S data fusion contest[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 3857-3865(2009).
[19] ZHONG Y F, HU X, LUO C et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 250, 112012(2020).
Get Citation
Copy Citation Text
Haizhao JING, Lijie TAO, Haokui ZHANG. Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer[J]. Optics and Precision Engineering, 2024, 32(23): 3504
Category:
Received: Sep. 30, 2024
Accepted: --
Published Online: Mar. 10, 2025
The Author Email: Haokui ZHANG (hkzhang@nwpu.edu.cn)