Chinese Journal of Lasers, Volume. 44, Issue 7, 703015(2017)

Q-Switched Characteristics of Tungsten Disulfide Er-Doped Fiber Laser

Yang Chunyu1、*, Liu Mengli1, Yu Weitian1, Zhang Yujia1, and Liu Wenjun1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(37)

    [1] [1] Paschotta R, Hring R, Gini E, et al. Passively Q-switched 0.1 mJ fiber laser system at 1.53 μm[J]. Optics Letters, 1999, 24(6): 388-390.

    [2] [2] Keller U, Weingarten K J, Krtner F X, et al. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453.

    [3] [3] Li H P, Xia H D, Lan C Y, et al. Passively Q-switched erbium-doped fiber laser based on few-layer MoS2 saturable absorber[J]. IEEE Photonics Technology Letters, 2015, 27(1): 69-72.

    [4] [4] Oktem B, lgüdür C, Ilday F O. Soliton-similariton fibre laser[J]. Nature Photonics, 2010, 4(5): 307-311.

    [5] [5] Muhammad F D, Zulkifli M Z, Ahmad H. Graphene based Q-switched tunable S-band fiber laser incorporating arrayed waveguide gratings (AWG)[J]. Journal of Nonlinear Optical Physics and Materials, 2014, 23(1): 1450004.

    [6] [6] Liu X M, Cui Y D, Han D D, et al. Distributed ultrafast fibre laser[J]. Scientific Reports, 2015, 5: 9101.

    [7] [7] Luo Z C, Liu J R, Wang H Y, et al. Wide-band tunable passively Q-switched all-fiber ring laser based on nonlinear polarization rotation technique[J]. Laser Physics, 2012, 22(1): 203-206.

    [8] [8] Sulaiman A, Harun S W, Ahmad H. Ring microfiber coupler erbium-doped fiber laser analysis[J]. Chinese Optics Letters, 2014, 12(2): 021403.

    [9] [9] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106.

    [10] [10] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

    [11] [11] Nelson L E, Jones D J, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B, 1997, 65(2): 277-294.

    [12] [12] Yamashita S, Inoue Y, Maruyama S, et al. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers[J]. Optics Letters, 2004, 29(14): 1581-1583.

    [13] [13] Wang F, Rozhin A G, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fiber lasers[J]. Nature Nanotechnology, 2008, 3(12): 738-742.

    [14] [14] Hasan T, Sun Z P, Wang F Q, et al. Nanotube-polymer composites for ultrafast photonics[J]. Advanced Materials, 2009, 21(38/39): 3874-3899.

    [15] [15] Liu X M, Han D D, Sun Z P, et al. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes[J]. Scientific Reports, 2013, 3: 2718.

    [16] [16] Martinez A, Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845.

    [17] [17] Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

    [18] [18] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

    [19] [19] Luo Z Q, Huang Y Z, Zhong M, et al. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber[J]. Journal of Lightwave Technology, 2014, 32(24): 4077-4084.

    [20] [20] Woodward R I, Kelleher E J R, Howe R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122.

    [21] [21] Zhao C J, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.

    [22] [22] Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.

    [23] [23] Liu W J, Pang L H, Han H N, et al. Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers[J]. Optics Express, 2015, 23(20): 26023-26031.

    [24] [24] Yu H H, Zhang H, Wang Y C, et al. Topological insulator as an optical modulator for pulsed solid-state lasers[J]. Laser and Photonics Reviews, 2013, 7(6): L77-L83.

    [25] [25] Luo Z C, Liu M, Guo Z N, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser[J]. Optics Express, 2015, 23(15): 20030-20039.

    [26] [26] Dhanabalan S C, Ponraj J S, Guo Zhinan, et al. Emerging trends in phosphorene fabrication towards next generation devices[J]. Advanced Science, 2017, 4(6): 1600305.

    [27] [27] Cong C X, Shang J Z, Wu X, et al. Synthesis and optical properties of large-scale single-crystalline two-dimensional semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136.

    [28] [28] Mao D, Wang Y D, Ma C J, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

    [29] [29] Liu W J, Pang L H, Han H N, et al. Dark solitons in WS2 erbium-doped fiber lasers[J]. Photonics Research, 2016, 4(3): 111-114.

    [30] [30] Zheng X, Zhang Y W, Chen R Z, et al. Z-scan measurement of the nonlinear refractive index of monolayer WS2[J]. Optics Express, 2015, 23(12): 15616-15623.

    [31] [31] Wu K, Zhang X Y, Wang J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461.

    [32] [32] Liu W J, Pang L H, Han H N, et al. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers[J]. Optics Express, 2017, 25(3): 2950-2959.

    [33] [33] Yan P G, Liu A J, Chen Y S, et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Optical Materials Express, 2015, 5(3): 479-489.

    [34] [34] Chen B H, Zhang X Y, Wu K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737.

    [35] [35] Khazaeinezhad R, Nazari T, Jeong H, et al. Passive Q-switching of an all-fiber laser using WS2-deposited optical fiber taper[J]. IEEE Photonics Journal, 2015, 7(5): 1503507.

    [36] [36] Pang L H, Liu W J, Tian W L, et al. Nanosecond hybrid Q-switched Er-doped fiber laser with WS2 saturable absorber[J]. IEEE Photonics Journal, 2016, 8(3): 1501907.

    [37] [37] Xu X T, Zhai J P, Wang J S, et al. Passively Q-switching induced by the smallest single-walled carbon nanotubes[J]. Applied Physics Letters, 2014, 104(17): 171107.

    Tools

    Get Citation

    Copy Citation Text

    Yang Chunyu, Liu Mengli, Yu Weitian, Zhang Yujia, Liu Wenjun. Q-Switched Characteristics of Tungsten Disulfide Er-Doped Fiber Laser[J]. Chinese Journal of Lasers, 2017, 44(7): 703015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 17, 2017

    Accepted: --

    Published Online: Jul. 5, 2017

    The Author Email: Yang Chunyu (yangchunyu@bupt.edu.cn)

    DOI:10.3788/cjl201744.0703015

    Topics