Journal of Fudan University(Natural Science), Volume. 64, Issue 3, 243(2025)

Personalized Tumor Model Reconstruction Based on Brain Imaging and Parameters Optimization of Tumor Treating Fields

ZHOU Yuxing1, MA Yingtong2, and JIA Fumin1、*
Author Affiliations
  • 1Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China
  • 2School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    References(33)

    [1] [1] KORSHOEJ A R, HANSEN F L, THIELSCHER A, et al. Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: A computer modeling study[J].PLOS One, 2017,12(6): e0179214.

    [2] [2] RANJBARZADEH R, CAPUTO A, TIRKOLAEE E B, et al. Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools[J].Computers in Biology and Medicine, 2023,152: 106405.

    [3] [3] PALPAN F A, VIVANCOS S C, RODA J M, et al. Assessment of pre-operative measurements of tumor size by MRI methods as survival predictors in wild type IDH glioblastoma[J].Frontiers in Oncology, 2020,10: 1662.

    [4] [4] BYRD B K, KRISHNASWAMY V, GUI J, et al. The shape of breast cancer[J].Breast Cancer Research and Treatment, 2020,183(2): 403-410.

    [5] [5] CONNELLY J, HORMIGO A, MOHILIE N, et al. Planning TTFields treatment using the Novo TAL system-clinical case series beyond the use of MRI contrast enhancement[J].Bio Med Central Cancer, 2016,16(1): 842.

    [6] [6] STUPP R, TAILLIBERT S, KANNER A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial[J].The Joural of the American Medical Association, 2017,318(23): 2306-2316.

    [7] [7] CHAUDHRY A, BENSON L, VARSHAVER M, et al. Novo TTFTM-100A system (tumor treating fields) transducer array layout planning for glioblastoma: A Novo TALTM system user study[J].World Journal of Surgical Oncology, 2015,13(1): 316.

    [8] [8] SWANSON K D, LOK E, WONG E T. An overview of alternating electric fields therapy (NovoTTF therapy) for the treatment of malignant glioma[J].Current Neurology and Neuroscience Reports, 2016,16(1): 8.

    [9] [9] NEUDORFER C, BUTENKO K, OXENFORD S, et al. Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks[J].NeuroImage, 2023,268: 119862.

    [10] [10] BERGER B, LAVAF A, DEROSE P M, et al. Patient-specific segmentation-based treatment planning vs. Novo TAL for TTFields therapy in glioblastoma[J].International Journal of Radiation Oncology*Biology*Physics, 2023,117(Suppl2): e87.

    [11] [11] BAID U, GHODASARA S, MOHAN S, et al. The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification[A]. arXiv, 2021: 2107.02314.

    [12] [12] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEETransactions on Medical Imaging, 2015,34(10): 1993-2024.

    [13] [13] BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J].Scientific Data, 2017,4(1): 170117.

    [14] [14] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234-241.

    [15] [15] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J].Nature Methods, 2021,18(2): 203-211.

    [16] [16] LUU H M, PARK S H. Extending n n U-Net for brain tumor segmentation[C]//International MICCAI Brainlesion Workshop. Singapore: Springer, 2022: 173-186.

    [17] [17] WANG W, CHEN C, DING M, et al. TransBTS: Multimodal brain tumor segmentation using transformer[A]. arXiv: 2103.04430, 2021.

    [18] [18] XING Z, YU L, WAN L, et al. Nested Former: Nested modality-aware transformer for brain tumor segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Singapore: Springer, 2022: 140-150.

    [19] [19] FEDOROV A, BEICHEL R, KALPATHY-CRAMER J, et al. 3D slicer as an image computing platform for the quantitative imaging network[J].Magnetic Resonance Imaging, 2012,30(9): 1323-1341.

    [20] [20] DEWEYERT A, IREDALE E, XU H, et al. Diffuse intrinsic pontine glioma cells are vulnerable to low intensity electric fields delivered by intratumoral modulation therapy[J].Journal of Neuro-Oncology, 2019,143(1): 49-56.

    [21] [21] STEIGERWALD F, MATTHIES C, VOLKMANN J. Directional deep brain stimulation[J].Neurotherapeutics, 2019,16(1): 100-104.

    [22] [22] GENTILAL N, MIRANDA P C. Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution[J].Computer Methods and Programs in Biomedicine, 2020,196: 105706.

    [23] [23] IREDALE E, DEWEYERT A, HOOVER D A, et al. Optimization of multi-electrode implant configurations and programming for the delivery of non-ablative electric fields in intratumoral modulation therapy[J].Medical Physics, 2020,47(11): 5441-5454.

    [24] [24] WIESER H P, CISTERNAS E, WAHL N, et al. Development of the open-source dose calculation and optimization toolkit mat Rad[J].Medical Physics, 2017,44(6): 2556-2568.

    [25] [25] LIN D, WANG M, CHEN Y, et al. Trends in intracranial glioma incidence and mortality in the united states, 1975-2018[J].Frontiers in Oncology, 2021,11: 748061.

    [26] [26] WENGER C, SALVADOR R, BASSER P J, et al. Improving tumor treating fields treatment efficacy in patients with glioblastoma using personalized array layouts[J].International Journal of Radiation Oncology*Biology*Physics, 2016,94(5): 1137-1143.

    [27] [27] ANDERSON D N, OSTING B, VORWERK J, et al. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes[J].Journal of Neural Engineering, 2018,15(2): 026005.

    [28] [28] KORSHOEJ A R, SRENSEN J CHR H, VON OETTINGEN G, et al. Optimization of tumor treating fields using singular value decomposition and minimization of field anisotropy[J].Physics in Medicine & Biology, 2019,64(4): 04NT03.

    [29] [29] IREDALE E, VOIGT B, RANKIN A, et al. Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control[J].Medical Physics, 2022,49(9): 6055-6067.

    [30] [30] WU J, FU R, FANG H, et al. MedSegDiff: Medical image segmentation with diffusion probabilistic model[A]. arXiv, 2023: 2211.00611.

    [31] [31] CHEN T, WANG C, SHAN H. BerDiff: Conditional Bernoulli diffusion model for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Vancouver, Canada: Springer, 2023: 491-501.

    [32] [32] CHEN T, WANG C, CHEN Z, et al. HiDiff: Hybrid diffusion framework for medical image segmentation[J].IEEE Transactions on Medical Imaging, 2024: 3570-3583.

    [33] [33] MA J, HE Y, LI F, et al. Segment anything in medical images[J].Nature Communications, 2024,15(1): 654.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Yuxing, MA Yingtong, JIA Fumin. Personalized Tumor Model Reconstruction Based on Brain Imaging and Parameters Optimization of Tumor Treating Fields[J]. Journal of Fudan University(Natural Science), 2025, 64(3): 243

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 21, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email: JIA Fumin (jfmin@fudan.edu.cn)

    DOI:

    Topics