Chinese Journal of Lasers, Volume. 50, Issue 23, 2300001(2023)
Research Progress of Flexible Photothermoelectric Detectors
[1] Cai S, Xu X J, Yang W et al. Materials and designs for wearable photodetectors[J]. Advanced Materials, 31, 1808138(2019).
[2] Wang B, Zhang Z B, Zhong S P et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology[J]. Journal of Materials Chemistry C, 8, 4988-5014(2020).
[3] Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 68, 2267-2336(2005).
[4] Perera A G U, Matsik S G, Liu H C et al. GaAs/InGaAs quantum well infrared photodetector with a cutoff wavelength at 35 μm[J]. Applied Physics Letters, 77, 741-743(2000).
[5] Chen J L, Wang X K, Zhu H Y et al. Dewar packaging technology of multiband long-wave infrared focal plane array detectors for cryogenic optics[J]. Chinese Journal of Lasers, 49, 2110002(2022).
[6] Hu M D, Xiong X, Wu J L et al. Design of cold shield in infrared detector[J]. Acta Optica Sinica, 43, 0904001(2023).
[7] Masini G, Cencelli V, Colace L et al. A germanium photodetector array for the near infrared monolithically integrated with silicon CMOS readout electronics[J]. Physica E: Low-Dimensional Systems and Nanostructures, 16, 614-619(2003).
[8] Cutler M, Mott N F. Observation of Anderson localization in an electron gas[J]. Physical Review, 181, 1336-1340(1969).
[9] Bolotin K I, Sikes K J, Jiang Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).
[10] Kampfrath T, von Volkmann K, Aguirre C M et al. Mechanism of the far-infrared absorption of carbon-nanotube films[J]. Physical Review Letters, 101, 267403(2008).
[11] Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 76, 1-24(1994).
[12] Di J T, Hu D M, Chen H Y et al. Ultrastrong, foldable, and highly conductive carbon nanotube film[J]. ACS Nano, 6, 5457-5464(2012).
[13] Fan X M, Yu C, Ling Z et al. Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance[J]. ACS Applied Materials & Interfaces, 5, 2104-2110(2013).
[14] Bindl D J, Wu M Y, Prehn F C et al. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J]. Nano Letters, 11, 455-460(2011).
[15] Li X X, Deng Z, Li J et al. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 8, 1662-1670(2020).
[16] Stahl H, Appenzeller J, Martel R et al. Intertube coupling in ropes of single-wall carbon nanotubes[J]. Physical Review Letters, 85, 5186-5189(2000).
[17] Ghasempour R, Narei H. CNT basics and characteristics[M]. Carbon nanotube-reinforced polymers, 1-24(2018).
[18] Jintoku H, Matsuzawa Y, Yoshida M. Light-induced fabrication of patterned conductive nanocarbon films for flexible electrode[J]. ACS Applied Nano Materials, 3, 8866-8874(2020).
[19] Wu W D, Wang Y X, Niu Y Y et al. Thermal localization enhanced fast photothermoelectric response in a quasi-one-dimensional flexible NbS3 photodetector[J]. ACS Applied Materials & Interfaces, 12, 14165-14173(2020).
[20] Dai M J, Wang C W, Ye M et al. High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der Waals contacts[J]. ACS Nano, 16, 295-305(2022).
[21] Wang Y, Cui Z J, Zhang X J et al. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors[J]. ACS Applied Materials & Interfaces, 12, 52082-52088(2020).
[22] Nakai Y, Honda K, Yanagi K et al. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film[J]. Applied Physics Express, 7, 025103(2014).
[23] Zhang Z L, Qi P F, Guo L J et al. Review on super-resolution near-field terahertz imaging methods[J]. Acta Optica Sinica, 43, 0600001(2023).
[24] Stavis S M, Fagan J A, Stopa M et al. Nanoparticle manufacturing-heterogeneity through processes to products[J]. ACS Applied Nano Materials, 1, 4358-4385(2018).
[25] Suzuki D, Ochiai Y, Kawano Y. Thermal device design for a carbon nanotube terahertz camera[J]. ACS Omega, 3, 3540-3547(2018).
[26] Chiu K C, Falk A L, Ho P H et al. Strong and broadly tunable plasmon resonances in thick films of aligned carbon nanotubes[J]. Nano Letters, 17, 5641-5645(2017).
[27] Jintoku H, Sato T, Nakazumi T et al. Formation of highly pure and patterned carbon nanotube films on a variety of substrates by a wet process based on light-induced dispersibility switching[J]. ACS Applied Materials & Interfaces, 9, 30805-30811(2017).
[28] He X W, Fujimura N, Lloyd J M et al. Carbon nanotube terahertz detector[J]. Nano Letters, 14, 3953-3958(2014).
[29] Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner[J]. Nature Photonics, 10, 809-813(2016).
[30] Ahmad H, Suzuki D, Kawano Y. Strain-induced photo-thermoelectric terahertz detection[J]. AIP Advances, 8, 115002(2018).
[31] Li K, Suzuki D, Ochiai Y et al. Sensitivity enhancement of photothermoelectric terahertz detectors with series combination between carbon nanotubes and metals[C](2018).
[32] Li K, Suzuki D, Kawano Y. Series photothermoelectric coupling between two composite materials for a freely attachable broadband imaging sheet[J]. Advanced Photonics Research, 2, 2000095(2021).
[33] Sugahara T, Ekubaru Y, van Nong N et al. Fabrication with semiconductor packaging technologies and characterization of a large-scale flexible thermoelectric module[J]. Advanced Materials Technologies, 4, 1800556(2019).
[34] Li K, Utaki R, Sun M L et al. A highly-sensitive and highly-integrated flexible broadband imager with 3D printed π-shaped photo-thermoelectric pixel structures[C](2021).
[35] Utaki R, Li K, Kawano Y. A stretchable wideband photo-thermoelectric wrap scanner sheet for wearable and noninvasive liquid quality monitoring[C](2021).
[36] Li K, Yuasa R, Utaki R et al. Robot-assisted, source-camera-coupled multi-view broadband imagers for ubiquitous sensing platform[J]. Nature Communications, 12, 1-11(2021).
[37] Li K, Araki T, Utaki R et al. Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping[J]. Science Advances, 8, eabm4349(2022).
[38] Zubair A, Wang X, Mirri F et al. Carbon nanotube woven textile photodetector[J]. Physical Review Materials, 2, 015201(2018).
[39] Suzuki D, Li K, Ishibashi K et al. A terahertz video camera patch sheet with an adjustable design based on self-aligned, 2D, suspended sensor array patterning[J]. Advanced Functional Materials, 31, 2008931(2021).
[40] Sakai D, Li K, Kawano Y. All-printable flexible photo-thermoelectric broadband terahertz and millimeter-waves imagers with carbon nanotubes[C], 955-957(2023).
[41] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[42] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005).
[43] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453(2005).
[44] Lee C G, Wei X D, Kysar J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).
[45] Liu N, Tian H, Schwartz G et al. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene[J]. Nano Letters, 14, 3702-3708(2014).
[46] Banerjee I, Faris T, Stoeva Z et al. Graphene films printable on flexible substrates for sensor applications[J]. 2D Materials, 4, 015036(2016).
[47] Wen J G, Niu Y Y, Wang P F et al. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity[J]. Carbon, 153, 274-284(2019).
[48] Jiang X, Zhao J J, Li Y L et al. Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction[J]. Advanced Functional Materials, 23, 5846-5853(2013).
[49] Pettes M T, Ji H X, Ruoff R S et al. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite[J]. Nano Letters, 12, 2959-2964(2012).
[50] Liu Y, Yin J, Wang P F et al. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films[J]. ACS Applied Materials & Interfaces, 10, 36304-36311(2018).
[51] Zhang L S, Su X H, Sun Z et al. Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films[J]. Applied Surface Science, 351, 693-696(2015).
[52] Pisoni A, Jaćimović J, Barišić O S et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3[J]. The Journal of Physical Chemistry Letters, 5, 2488-2492(2014).
[53] Li Y F, Zhang Y T, Chen Z L et al. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 8, 1301-1308(2020).
[54] Wright D A. Thermoelectric properties of bismuth telluride and its alloys[J]. Nature, 181, 834(1958).
[55] Venkatasubramanian R, Siivola E, Colpitts T et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 413, 597-602(2001).
[56] Kumar M, Rani S, Singh Y et al. Tin-selenide as a futuristic material: properties and applications[J]. RSC Advances, 11, 6477-6503(2021).
[57] Deng W J, Wang C W, Dai M J et al. Ultra-broadband SnSe-based photothermoelectric detector for mid-infrared gas spectroscopy[J]. Applied Physics Letters, 121, 112105(2022).
[58] Zhong Y J, Zhang L, Linseis V et al. High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application[J]. Nano Energy, 72, 104742(2020).
[59] Yao J D, Zheng Z Q, Yang G W. All-layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes[J]. Advanced Functional Materials, 27, 1701823(2017).
[60] Zhou Q Q, Lu D L, Tang H et al. Self-powered ultra-broadband and flexible photodetectors based on the bismuth films by vapor deposition[J]. ACS Applied Electronic Materials, 2, 1254-1262(2020).
[61] Niu Y Y, Wang Y X, Wu W D et al. Ultrabroadband, fast, and flexible photodetector based on HfTe5 crystal[J]. Advanced Optical Materials, 8, 2000833(2020).
[62] Qiao H, Yuan J, Xu Z Q et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 9, 1886-1894(2015).
[63] Yao J D, Shao J M, Wang Y X et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 7, 12535-12541(2015).
[64] Liu H, Liu Y J, Dong S C et al. Photothermoelectric SnTe photodetector with broad spectral response and high on/off ratio[J]. ACS Applied Materials & Interfaces, 12, 49830-49839(2020).
[65] Gu Y Z, Yao X, Geng H X et al. Large-area, flexible, and dual-source Co-evaporated Cs3Cu2I5 nanolayer to construct ultra-broadband photothermoelectric detector from visible to terahertz[J]. ACS Applied Electronic Materials, 4, 663-671(2022).
[66] Li Y F, Zhang Y T, Li T T et al. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors[J]. Nano Letters, 20, 5646-5654(2020).
[67] Li Y F, Zhang Y T, Li T T et al. A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPbI3/PEDOT: PSS composite[J]. Journal of Materials Chemistry C, 8, 12148-12154(2020).
[68] Park J, Hwang J C, Kim G G et al. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials[J]. InfoMat, 2, 33-56(2020).
[69] Island J O, Molina-Mendoza A J, Barawi M et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides[J]. 2D Materials, 4, 022003(2017).
[70] Island J O, Buscema M, Barawi M et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors[J]. Advanced Optical Materials, 2, 641-645(2014).
[71] Xiong W W, Chen J Q, Wu X C et al. Visible light detectors based on individual ZrSe3 and HfSe3 nanobelts[J]. Journal of Materials Chemistry C, 3, 1929-1934(2015).
[72] Tao Y R, Wu X C, Xiong W W. Flexible visible-light photodetectors with broad photoresponse based on ZrS3 nanobelt films[J]. Small, 10, 4905-4911(2014).
[73] Xiong W W, Chen J Q, Wu X C et al. Individual HfS3 nanobelt for field-effect transistor and high performance visible-light detector[J]. Journal of Materials Chemistry C, 2, 7392-7395(2014).
[74] Harris K J, Bugnet M, Naguib M et al. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy[J]. The Journal of Physical Chemistry C, 119, 13713-13720(2015).
[75] Cheng H G, Liu Q X, Han S P et al. Highly efficient photothermal conversion of Ti3C2Tx/ionic liquid gel pen ink for smoothly writing ultrasensitive, wide-range detecting, and flexible thermal sensors[J]. ACS Applied Materials & Interfaces, 12, 37637-37646(2020).
[76] Lin H, Wang X G, Yu L D et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 17, 384-391(2017).
[77] Choy C L. Thermal conductivity of polymers[J]. Polymer, 18, 984-1004(1977).
[78] Poehler T O, Katz H E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis[J]. Energy & Environmental Science, 5, 8110-8115(2012).
[79] Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science, 5, 9345-9362(2012).
[80] Gao J, Miao L, Zhang B et al. Advances in flexible thermoelectric materials and devices[J]. Journal of Functional Polymers, 30, 142-167(2017).
[81] Kim G H, Shao L, Zhang K et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 12, 719-723(2013).
[82] Sun Y M, Sheng P, Di C A et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1, 1, 2, 2-ethenetetrathiolate)S[J]. Advanced Materials, 24, 932-937(2012).
[83] Wang X, Liu Q C, Wu S Y et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials, 31, 1807716(2019).
[84] Baker C O, Huang X W, Nelson W et al. Polyaniline nanofibers: broadening applications for conducting polymers[J]. Chemical Society Reviews, 46, 1510-1525(2017).
[85] Liu S Q, Kong J H, Chen H M et al. Interfacial energy barrier tuning for enhanced thermoelectric performance of PEDOT nanowire/SWNT/PEDOT: PSS ternary composites[J]. ACS Applied Energy Materials, 2, 8843-8850(2019).
[86] Rahimzadeh Z, Naghib S M, Zare Y et al. An overview on the synthesis and recent applications of conducting poly(3, 4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine[J]. Journal of Materials Science, 55, 7575-7611(2020).
[87] Shi Q W, Sun J Q, Hou C Y et al. Advanced functional fiber and smart textile[J]. Advanced Fiber Materials, 1, 3-31(2019).
[88] Wang Y T, Yang L, Shi X L et al. Flexible thermoelectric materials and generators: challenges and innovations[J]. Advanced Materials, 31, 1807916(2019).
[89] Zhang J Z, Seyedin S, Qin S et al. Fast and scalable wet-spinning of highly conductive PEDOT: PSS fibers enables versatile applications[J]. Journal of Materials Chemistry A, 7, 6401-6410(2019).
[90] Feng K, Xu L, Xiong Y et al. PEDOT: PSS and Ni-based thermoelectric generator for solar thermal energy conversion[J]. Journal of Materials Chemistry C, 8, 3914-3922(2020).
[91] Zhang X F, Li T T, Ren H T et al. Dual-shell photothermoelectric textile based on a PPy photothermal layer for solar thermal energy harvesting[J]. ACS Applied Materials & Interfaces, 12, 55072-55082(2020).
[92] Zhang X F, Shiu B, Li T T et al. Synergistic work of photo-thermoelectric and hydroelectric effects of hierarchical structure photo-thermoelectric textile for solar energy harvesting and solar steam generation simultaneously[J]. Chemical Engineering Journal, 426, 131923(2021).
[93] Xu H H, Li J, Leung B H K et al. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction[J]. Nanoscale, 5, 11850-11855(2013).
[94] Ji Z, Zhao W R, Xiang L Y et al. Hierarchical heterojunction enhanced photodoping of polymeric semiconductor for photodetection and photothermoelectric applications[J]. ACS Materials Letters, 4, 815-822(2022).
[95] Wang C L, Dong H L, Hu W P et al. Semiconducting π- conjugated systems in field-effect transistors: a material odyssey of organic electronics[J]. Chemical Reviews, 112, 2208-2267(2012).
[96] Mei J G, Diao Y, Appleton A L et al. Integrated materials design of organic semiconductors for field-effect transistors[J]. Journal of the American Chemical Society, 135, 6724-6746(2013).
[97] Tsao H N, Cho D M, Park I et al. Ultrahigh mobility in polymer field-effect transistors by design[J]. Journal of the American Chemical Society, 133, 2605-2612(2011).
[98] Lee B H, Bazan G C, Heeger A J. Doping-induced carrier density modulation in polymer field-effect transistors[J]. Advanced Materials, 28, 57-62(2016).
[99] Li W S, Guo Y T, Shi J J et al. Solution-processable neutral green electrochromic polymer containing thieno[3, 2-b]thiophene derivative as unconventional donor units[J]. Macromolecules, 49, 7211-7219(2016).
[100] Hasegawa T, Ashizawa M, Hayashi Y et al. P- and n-channel photothermoelectric conversion based on ultralong near-infrared wavelengths absorbing polymers[J]. ACS Applied Polymer Materials, 1, 542-551(2019).
[101] Liu Y F, Lan X Q, Xu J K et al. Organic/inorganic hybrid boosting energy harvesting based on the photothermoelectric effect[J]. ACS Applied Materials & Interfaces, 13, 43155-43162(2021).
[102] Huang D Z, Zou Y, Jiao F et al. Interface-located photothermoelectric effect of organic thermoelectric materials in enabling NIR detection[J]. ACS Applied Materials & Interfaces, 7, 8968-8973(2015).
[103] Jiang R B, Cheng S, Shao L et al. Mass-based photothermal comparison among gold nanocrystals, PbS nanocrystals, organic dyes, and carbon black[J]. The Journal of Physical Chemistry C, 117, 8909-8915(2013).
[104] Xin C H, Hu Z L, Fang Z Q et al. Flexible and wearable plasmonic-enabled organic/inorganic hybrid photothermoelectric generators[J]. Materials Today Energy, 22, 100859(2021).
[105] Stokes P, Liu L W, Zou J H et al. Photoresponse in large area multiwalled carbon nanotube/polymer nanocomposite films[J]. Applied Physics Letters, 94, 042110(2009).
[106] Kuriakose M, Depriester M, Chan Yu King R et al. Photothermoelectric effect as a means for thermal characterization of nanocomposites based on intrinsically conducting polymers and carbon nanotubes[J]. Journal of Applied Physics, 113, 044502(2013).
[107] Zhang M Y, Yeow J T W. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite[J]. Carbon, 156, 339-345(2020).
[108] Wang J Q, Xie Z M, Liu J A et al. Design of room-temperature infrared photothermoelectric detectors based on CNT/PEDOT: PSS composites[J]. Journal of Materials Chemistry C, 10, 15105-15113(2022).
[109] Jin X Z, Li H, Wang Y et al. Ultraflexible PEDOT: PSS/helical carbon nanotubes film for all-in-one photothermoelectric conversion[J]. ACS Applied Materials & Interfaces, 14, 27083-27095(2022).
[110] Xie Z M, Wang J Q, Yeow J T W. Doped polyaniline/graphene composites for photothermoelectric detectors[J]. ACS Applied Nano Materials, 5, 7967-7973(2022).
[111] Zare E N, Makvandi P, Ashtari B et al. Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review[J]. Journal of Medicinal Chemistry, 63, 1-22(2020).
[112] Xie Z M, Wang J Q, Yeow J T W. Flexible multi-element photothermoelectric detectors based on spray-coated graphene/polyethylenimine composites for nondestructive testing[J]. ACS Applied Materials & Interfaces, 15, 5921-5930(2023).
[113] Kim H J, An S J, Kim J Y et al. Polybenzimidazoles for high temperature fuel cell applications[J]. Macromolecular Rapid Communications, 25, 1410-1413(2004).
[114] Hazarika M, Jana T. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1, 2, 4-triazole)[J]. ACS Applied Materials & Interfaces, 4, 5256-5265(2012).
[115] Park J, Jeong Y G. Effects of chain orientation and packing on the photoluminescence and photothermal properties of polybenzimidazole fibers with meta-linkage[J]. Macromolecules, 48, 8823-8830(2015).
[116] Park J, Jeong Y G. Thermoelectric and photothermoelectric properties of nanocomposite films based on polybenzimidazole and carbon nanotubes[J]. ACS Applied Electronic Materials, 4, 386-393(2022).
[117] Kojima H, Abe R, Fujiwara F et al. Universality of the giant Seebeck effect in organic small molecules[J]. Materials Chemistry Frontiers, 2, 1276-1283(2018).
[118] Wang L M, Zhang Z M, Geng L X et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics[J]. Energy & Environmental Science, 11, 1307-1317(2018).
[119] Wang Y Z, Lu Z X, Hu Q J et al. Mass-produced metallic multiwalled carbon nanotube hybrids exhibiting high N-type thermoelectric performances[J]. Journal of Materials Chemistry A, 9, 3341-3352(2021).
[120] Du P F, Ye W, Xiao S et al. Research progress of antimony-based type-Ⅱ superlattice InAs/InAsSb infrared detector[J]. Laser & Optoelectronics Progress, 59, 1700004(2022).
[121] Chirilă A, Reinhard P, Pianezzi F et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells[J]. Nature Materials, 12, 1107-1111(2013).
[122] Takahashi R, Yukita W, Sasatani T et al. Twin meander coil[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5, 1-21(2021).
Get Citation
Copy Citation Text
Ruifeng Liu, Meng Chen, Yingxin Wang, Ziran Zhao. Research Progress of Flexible Photothermoelectric Detectors[J]. Chinese Journal of Lasers, 2023, 50(23): 2300001
Category: reviews
Received: Dec. 16, 2022
Accepted: Apr. 18, 2023
Published Online: Dec. 7, 2023
The Author Email: Wang Yingxin (wangyingxin@tsinghua.edu.cn)