NUCLEAR TECHNIQUES, Volume. 46, Issue 7, 070606(2023)

Development of flow blockage model for core heat transfer and its application in QUENCH experiment

Pengcheng GAO1,2, Bin ZHANG2、*, Hao YANG2, and Jianqiang SHAN2
Author Affiliations
  • 1Naval Research Institute, Beijing 100071, China
  • 2School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    Figures & Tables(16)
    Illustration of fuel claddings after a LOCA simulation during a PHEBUS-LOCA experiment
    Heat and mass transfer phenomena during LOCA with ballooning of fuel claddings
    Flow chart of ISAA-FRTMB coupling interface
    Illustration of flow blockage model (a) The top view of the fuel assembly, (b) The front view of the fuel assembly
    Diagram of QUENCH test facility
    Diagram of test bundle cross-section
    Sketch map of node division of QUENCH experimental device
    Bundle heating power and steam flow ratio
    Cladding temperature variation at axial elevations of 950 mm, 750 mm, 550 mm, and 450 mm
    Channel blockage rate at 950 mm axial elevation
    Blockage rate of coolant channel at different radial rings
    Comparison of experimental and simulated values of cladding hoop strain and temperature for rod #4
    Cladding hoop strain at 950 mm axial elevation
    Internal pressure values of test rods
    • Table 1. Events and phases of the QUENCH-L0

      View table
      View in Article

      Table 1. Events and phases of the QUENCH-L0

      阶段Phase时间Time / s事件Event

      0. 预备阶段

      Preparation

      -1 000

      开始记录数据,Tmax = 800 K,电功率为4.62 kW

      Start data recording, Tmax = 800 K, electrical power at 4.62 kW

      I. 加热阶段

      Heating phase

      0以最大电加热功率启动瞬态Start of transient with max electrical power increase rate
      2电功率27 kW Electrical power 27 kW
      186.6

      将电功率转换为3.4 kW,Tmax = 1 317 K,电功率为41 kW

      Switch of the electrical power to decay heat of 3.4 kW, Tmax = 1 317 K, electrical power 41 kW

      II. 冷却阶段

      Cooldown phase

      200

      达到包壳壁面最大温度,Tmax = 1 349 K

      Cladding surface temperature maximum reached, Tmax = 1 349 K

      217.8

      启动快速蒸汽供应管线(50 g·s-1)并接入到蒸汽(2 g·s-1)和氩气(6 g·s-1)缓慢供应管线

      Initiation of rapid steam supply line (50 g·s-1) additionally to slow steam supply (2 g·s-1) and carrier argon (6 g·s-1)

      223⁓225包壳快速冷却至400 K Rapid cladding cooling to 400 K
      237⁓263将棒束温度增加到660 K Increase of bundle temperature to 660 K

      III. 淹没阶段

      Flooding phase

      362

      启动应急冷却水供应,关闭蒸汽供应,将氩气切换到从棒束顶部供应

      Initiation of quench water supply, switch-off of steam supply, switch of argon to bundle top supply

      387达到最大骤冷速率100 g·s-1 Maximum quench rate (100 g·s-1) reached
      480组件完全被水淹没 Bundle completely filled with water
      528关闭加热电源,Tmax = 333 K Electrical power switched off, Tmax = 333 K
      1 100数据记录结束 End of data recording
    • Table 2. Cladding burst

      View table
      View in Article

      Table 2. Cladding burst

      燃料棒编号

      Fuel rod number

      实验值[18]

      Experiment

      耦合系统

      ISAA-FRTMB

      SOCRAT/V3[19]
      Rod #4

      114.6 s at 1 073 K

      (高度 967.8 mm)

      (Elevation 967.8 mm)

      118.81 s at 1 101.49 K

      (高度 950 mm)

      (Elevation 950 mm)

      150.56 s at 1 077.35 K

      (高度 950 mm)

      (Elevation 950 mm)

      Rod #3

      119.2 s at 1 089 K

      (高度 954 mm)

      (Elevation 954 mm)

      119.63 s at 1 112.52 K

      (高度 950 mm)

      (Elevation 950 mm)

      146.52 s at 1 066.36 K

      (高度 950 mm)

      (Elevation 950 mm)

      Rod #11

      167.2 s at 1 141 K

      (高度 957.8 mm)

      (Elevation 957.8 mm)

      169.76 s at 1 115.35 K

      (高度 950 mm)

      (Elevation 950 mm)

      138.43 s at 1 192.68 K

      (高度 950 mm)

      (Elevation 950 mm)

    Tools

    Get Citation

    Copy Citation Text

    Pengcheng GAO, Bin ZHANG, Hao YANG, Jianqiang SHAN. Development of flow blockage model for core heat transfer and its application in QUENCH experiment[J]. NUCLEAR TECHNIQUES, 2023, 46(7): 070606

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 29, 2022

    Accepted: --

    Published Online: Aug. 3, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.070606

    Topics