Chinese Journal of Lasers, Volume. 51, Issue 4, 0402404(2024)

Photochemical Synthesis Towards Hierarchical Silver Micro-Nanostructures via Dielectric Microspheres for Surface-Enhanced Raman Spectroscopy(Invited)

Bingbing Chen, Yinzhou Yan*, Chen Zhao, Yan Zhao, and Yijian Jiang
Author Affiliations
  • Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    References(49)

    [1] Panneerselvam R, Liu G K, Wang Y H et al. Surface-enhanced Raman spectroscopy: bottlenecks and future directions[J]. Chemical Communications, 54, 10-25(2018).

    [2] Balčytis A, Nishijima Y, Krishnamoorthy S et al. From fundamental toward applied SERS: shared principles and divergent approaches[J]. Advanced Optical Materials, 6, 1800292(2018).

    [3] Tong Q, Wang W J, Fan Y N et al. Recent progressive preparations and applications of silver-based SERS substrates[J]. TrAC Trends in Analytical Chemistry, 106, 246-258(2018).

    [4] Zhang X G, Dai Z G, Si S Y et al. Ultrasensitive SERS substrate integrated with uniform subnanometer scale 'hot spots' created by a graphene spacer for the detection of mercury ions[J]. Small, 13, 1603347(2017).

    [5] Li Z Y. Mesoscopic and microscopic strategies for engineering plasmon-enhanced Raman scattering[J]. Advanced Optical Materials, 6, 1701097(2018).

    [6] Lai C H, Lai L, Zhang Z J et al. Nitrate detection in water based on AuNPs-cysteamine SERS substrate[J]. Chinese Journal of Lasers, 49, 1111002(2022).

    [7] Yu H D, Regulacio M D, Ye E Y et al. Chemical routes to top-down nanofabrication[J]. Chemical Society Reviews, 42, 6006-6018(2013).

    [8] Yu J, Wu J G, Yang H et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic /-philic microporous platform[J]. ACS Applied Materials & Interfaces, 14, 43877-43885(2022).

    [9] Wang A D, Jiang L, Li X W et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. Journal of Materials Chemistry B, 5, 777-784(2017).

    [10] Bi K X, Chen Y Q, Wan Q et al. Direct electron-beam patterning of transferrable plasmonic gold nanoparticles using a HAuCl4/PVP composite resist[J]. Nanoscale, 11, 1245-1252(2019).

    [11] Li J F, Huang Y F, Ding Y et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 464, 392-395(2010).

    [12] Sakamoto M, Fujistuka M, Majima T. Light as a construction tool of metal nanoparticles: synthesis and mechanism[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10, 33-56(2009).

    [13] Cheng Z Q, Shi H Q, Yu P et al. Surface-enhanced Raman scattering effect of silver nanoparticles array[J]. Acta Physica Sinica, 67, 197302(2018).

    [14] Kumar K V A, John J, Sooraj T R et al. Surface plasmon response of silver nanoparticles doped silica synthesised via sol-gel route[J]. Applied Surface Science, 472, 40-45(2019).

    [15] Bai S, Zhou W P, Ma Y et al. Ag periodic nanostructures and morphology controlled by ultraviolet-visual photoreduction for surface-enhanced Raman scattering[J]. Chinese Journal of Lasers, 42, 0303013(2015).

    [16] Ye S, Song J, Tian Y L et al. Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance[J]. Nanoscale, 7, 12706-12712(2015).

    [17] Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles[J]. Journal of the American Chemical Society, 132, 1825-1827(2010).

    [18] Wang T J, Barveen N R, Liu Z Y et al. Transparent, flexible plasmonic AgNP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfaces[J]. ACS Applied Materials & Interfaces, 13, 34910-34922(2021).

    [19] Barveen N R, Wang T J, Chang Y H. Photochemical synthesis of Au nanostars on PMMA films by ethanol action as flexible SERS substrates for in situ detection of antibiotics on curved surfaces[J]. Chemical Engineering Journal, 431, 134240(2022).

    [20] Yang L K, Yang J R, Li Y Y et al. Controlling the morphologies of silver aggregates by laser-induced synthesis for optimal SERS detection[J]. Nanomaterials, 9, 1529(2019).

    [21] Yoshikawa H, Hironou A, Shen Z J et al. Versatile micropatterning of plasmonic nanostructures by visible light induced electroless silver plating on gold nanoseeds[J]. ACS Applied Materials & Interfaces, 8, 23932-23940(2016).

    [22] Zheng Z K, Tachikawa T, Majima T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region[J]. Journal of the American Chemical Society, 136, 6870-6873(2014).

    [23] Lei Y T, Li D W, Zhang T C et al. One-step selective formation of silver nanoparticles on atomic layered MoS2 by laser-induced defect engineering and photoreduction[J]. Journal of Materials Chemistry C, 5, 8883-8892(2017).

    [24] Linic S, Aslam U, Boerigter C et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nature Materials, 14, 567-576(2015).

    [25] MacKenzie M, Chi H N, Varma M et al. Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy[J]. Scientific Reports, 9, 17058(2019).

    [26] Ma Z C, Zhang Y L, Han B et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2, 1700413(2018).

    [27] Li C, Hu J, Jiang L et al. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications[J]. Nanophotonics, 9, 691-702(2020).

    [28] Liu L P, Yang D, Wan W P et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction[J]. Nanophotonics, 8, 1087-1093(2019).

    [29] Yan W J, Yang L K, Chen J N et al. In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Advanced Materials, 29, 1702893(2017).

    [30] Liu S Y, Zhang J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser & Optoelectronics Progress, 57, 111431(2020).

    [31] Balena A, Bianco M, Pisanello F et al. Recent advances on high-speed and holographic two-photon direct laser writing[J]. Advanced Functional Materials, 33, 2211773(2023).

    [32] Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 12, 1214-1220(2004).

    [33] Oraevsky A N. Whispering-gallery waves[J]. Quantum Electronics, 32, 377-400(2002).

    [34] Devilez A, Stout B, Bonod N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 4, 3390-3396(2010).

    [35] Guo W, Wang Z B, Li L et al. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Applied Physics Letters, 90, 243101(2007).

    [36] Lin Z Y, Liu K, Cao T et al. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption[J]. Opto-Electronic Advances, 6, 230029(2023).

    [37] Yi K J, Wang H, Lu Y F et al. Enhanced Raman scattering by self-assembled silica spherical microparticles[J]. Journal of Applied Physics, 101, 063528(2007).

    [38] Yan Y Z, Xing C, Jia Y H et al. Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection[J]. Optics Express, 23, 25854-25865(2015).

    [39] Xing C, Yan Y Z, Feng C et al. Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy[J]. ACS Applied Materials & Interfaces, 9, 32896-32906(2017).

    [40] Qian J S, Zhu Z B, Yuan J et al. Selectively enhanced Raman/fluorescence spectra in photonic-plasmonic hybrid structures[J]. Nanoscale Advances, 2, 4682-4688(2020).

    [41] Li X X, Lin X, Fang G Q et al. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates[J]. Journal of Colloid and Interface Science, 620, 388-398(2022).

    [42] Werner W S M, Glantschnig K, Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals[J]. Journal of Physical and Chemical Reference Data, 38, 1013-1092(2009).

    [43] Mandal A, Dantham V R. Photonic nanojets generated by single microspheres of various sizes illuminated by resonant and non-resonant focused Gaussian beams of different waists[J]. Journal of the Optical Society of America B, 37, 977-986(2020).

    [44] le Ru E C, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007).

    [45] Fan X Y, Zhang H, Zhao X R et al. Three-dimensional SERS sensor based on the sandwiched G@AgNPs@G/PDMS film[J]. Talanta, 233, 122481(2021).

    [46] Doan M Q, Anh N H, Quang N X et al. Ultrasensitive detection of methylene blue using an electrochemically synthesized SERS sensor based on gold and silver nanoparticles: roles of composition and purity on sensing performance and reliability[J]. Journal of Electronic Materials, 51, 150-162(2022).

    [47] Ansah I B, Lee S H, Mun C et al. Nanoscale crack generation of Au/Ag nanopillars by in situ galvanic replacement for sensitive, label-free, and rapid SERS detection of toxic substances[J]. Sensors and Actuators B: Chemical, 379, 133172(2023).

    [48] Wang M Y, Yan Y Z, Mi Y L et al. Flexible microsphere-coupled surface-enhanced Raman spectroscopy (McSERS) by dielectric microsphere cavity array with random plasmonic nanoparticles[J]. Journal of Raman Spectroscopy, 53, 1238-1248(2022).

    [49] Mi Y L, Yan Y Z, Wang M Y et al. Cascaded microsphere-coupled surface-enhanced Raman spectroscopy (CMS-SERS) for ultrasensitive trace-detection[J]. Nanophotonics, 11, 559-570(2022).

    Tools

    Get Citation

    Copy Citation Text

    Bingbing Chen, Yinzhou Yan, Chen Zhao, Yan Zhao, Yijian Jiang. Photochemical Synthesis Towards Hierarchical Silver Micro-Nanostructures via Dielectric Microspheres for Surface-Enhanced Raman Spectroscopy(Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402404

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Micro-Nano Manufacturing

    Received: Nov. 9, 2023

    Accepted: Dec. 25, 2023

    Published Online: Feb. 19, 2024

    The Author Email: Yan Yinzhou (yyan@bjut.edu.cn)

    DOI:10.3788/CJL231382

    CSTR:32183.14.CJL231382

    Topics