Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415001(2025)

Point Cloud Feature Extraction Network Based on Multiscale Feature Dynamic Fusion

Jing Liu1,2、*, Yuan Zhang1,2, Le Zhang3, Bo Li1,2, and Xiaowen Yang1,2
Author Affiliations
  • 1School of Data Science and Technology, North University of China, Taiyuan 030051, Shanxi , China
  • 2Shanxi Province Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, Shanxi , China
  • 3Department of Simulation Equipment, North Automatic Control Technology Institute, Taiyuan 030006, Shanxi , China
  • show less
    References(22)

    [3] Zhou L, Zhao B, Liang D. LDASH: a local feature descriptor of point cloud with high discrimination and strong robustness[J]. Laser & Optoelectronics Progress, 61, 1215007(2024).

    [5] Zhang Y, Shi Z P, Pang M et al. A color point cloud registration algorithm integrating shape and texture[J]. Laser & Optoelectronics Progress, 61, 2215003(2024).

    [16] Ning Y. Research on 3D point cloud registration method[J]. Geomatics & Spatial Information Technology, 45, 188-191(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jing Liu, Yuan Zhang, Le Zhang, Bo Li, Xiaowen Yang. Point Cloud Feature Extraction Network Based on Multiscale Feature Dynamic Fusion[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 8, 2024

    Accepted: Jun. 19, 2024

    Published Online: Feb. 14, 2025

    The Author Email:

    DOI:10.3788/LOP241237

    CSTR:32186.14.LOP241237

    Topics