Photonics Research, Volume. 8, Issue 7, 1213(2020)
Multitask deep-learning-based design of chiral plasmonic metamaterials
[14] T. Lu, K. Yun, A. Huyen. Deep neural networks for pattern recognition(2018).
[32] H. Peng, S. Thomson, N. A. Smith. Deep multitask learning for semantic dependency parsing(2017).
[35] D. C. Luvizon, D. Picard, H. Tabia. 2D/3D pose estimation and action recognition using multitask deep learning. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 5137-5146(2018).
[36] A. Maurer, M. Pontil, B. Romera-Paredes. The benefit of multitask representation learning. J. Mach. Learn. Res., 17, 2853-2884(2016).
[37] H. B. Lee, E. Yang, S. J. Hwang. Deep asymmetric multi-task feature learning(2018).
[38] D. Dong, H. Wu, W. He, D. Yu, H. Wang. Multi-task learning for multiple language translation. 53rd Annual Meeting of the Association for Computational Linguistics and 7th International Joint Conference on Natural Language Processing, 1, 1723-1732(2015).
[39] S. Liu, S. J. Pan, Q. Ho. Distributed multi-task relationship learning. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Part F1296, 937-946(2017).
[49] T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, I. Shimoyama. Spiral metamaterial for tunable circular dichroism. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 701-704(2013).
[56] Y. Yang, T. M. Hospedales. Deep multi-task representation learning: a tensor factorisation approach(2017).
[57] M. Rei. Semi-supervised multitask learning for sequence labeling. 55th Annual Meeting of the Association for Computational Linguist (ACL), 2121-2130(2017).
[58] I. Misra, A. Shrivastava, A. Gupta, M. Hebert. Cross-stitch networks for multi-task learning(2016).
[59] B. Neyshabur, S. Bhojanapalli, D. McAllester, N. Srebro. Exploring generalization in deep learning(2017).
[60] A. Y. Ng. Feature selection,
[61] R. Cipolla, Y. Gal, A. Kendall. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7482-7491(2018).
[62] D. P. Kingma, J. L. Ba. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations—Conference Track Proceedings, 1-15(2015).
Get Citation
Copy Citation Text
Eric Ashalley, Kingsley Acheampong, Lucas V. Besteiro, Peng Yu, Arup Neogi, Alexander O. Govorov, Zhiming M. Wang, "Multitask deep-learning-based design of chiral plasmonic metamaterials," Photonics Res. 8, 1213 (2020)
Category: Surface Optics and Plasmonics
Received: Jan. 13, 2020
Accepted: May. 26, 2020
Published Online: Jun. 30, 2020
The Author Email: Zhiming M. Wang (zhmwang@uestc.edu.cn)