Infrared and Laser Engineering, Volume. 51, Issue 10, 20220078(2022)

Research of ultra-light InGaAs NIR face detection algorithm

Yanyuan Su1,2,3, Guangyu Fan1,2、*, Haimei Gong1,2、*, Xue Li1,2, and Yongping Chen1,2
Author Affiliations
  • 1State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3ShanghaiTech University, Shanghai 201210, China
  • show less
    Figures & Tables(12)
    Module of ReActNet
    (a) Input image;(b) Input features of convolution layer;(c) Binarized features; (d) Reconstructed features after convolution
    (a) Block diagram of network; (b) Block diagram of optimized convolution module
    (a) Input image; (b) Feature intensity at the yellow line
    (a) Input image;(b) Input features of convolution layer;(c) Binarized features of ARSign pathway;(d) Binarized features of RSign pathway;(e) Reconstructed features after convolution
    ReActFace test results in FDDB test set (Baseline refers to the benchmark network, Float32 Model refers to the full precision SSD network)
    Module ablation results in FDDB validation set test
    Result on NIR Images
    • Table 1. ReActFace results in the WiderFace validation set

      View table
      View in Article

      Table 1. ReActFace results in the WiderFace validation set

      NetEasy mAPMedium mAPHard mAP
      Baseline66.38%54.02%23.45%
      ReActFace71.19%65.72%37.29%
      Float32 SSD76.48%67.02%40.77%
    • Table 2. Module ablation results in the WiderFace validation set test

      View table
      View in Article

      Table 2. Module ablation results in the WiderFace validation set test

      NetEasy mAPMedium mAPHard mAP
      ReActFace71.19%65.72%37.29%
      ReActFace-ARSign71.00%65.30%37.00%
      ReActFace-RBN70.90%65.20%36.62%
      ReActFace-Contrast Conv65.50%60.25%33.72%
      Baseline66.38%54.02%23.45%
    • Table 3. Result in NIR-Face data set

      View table
      View in Article

      Table 3. Result in NIR-Face data set

      NetmAP
      Baseline63.72%
      ReActFace71.18%
      Float32 Face Detector53.37%
    • Table 4. Result in NIR-Face data set

      View table
      View in Article

      Table 4. Result in NIR-Face data set

      NetSize of feature extractor/kbSize of Net/kb
      ReActFace264.8627.1
      Float32 Face Detector676.21040.8
    Tools

    Get Citation

    Copy Citation Text

    Yanyuan Su, Guangyu Fan, Haimei Gong, Xue Li, Yongping Chen. Research of ultra-light InGaAs NIR face detection algorithm[J]. Infrared and Laser Engineering, 2022, 51(10): 20220078

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Jan. 29, 2022

    Accepted: --

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220078

    Topics