Infrared and Laser Engineering, Volume. 54, Issue 6, 20250076(2025)

Multi-scale phase extraction network for structured light based on discrete wavelet transform and attention mechanism

Jianhua SHANG, Gang WANG, Yang LIU, Haiqin XU, and Jiatong SUN
Author Affiliations
  • College of Information Science and Technology, Donghua University, Shanghai 201620, China
  • show less
    Figures & Tables(13)
    Network Structure
    The illustration of 2D-DWT method
    (a) The illustration of multi-scale augmented prediction module; (b) The illustration of bottom up module
    Predication of different networks under fringe pattern with single object. (a), (e), (i) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by UNet; (b), (f), (j) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by Att-UNet; (c), (g), (k) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by Swin-UNet; (d), (h), (l) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by WA-MSPNet
    Error maps of different networks under fringe pattern with single object. (a)-(d) The error maps of \begin{document}$ M(x,y) $\end{document} predicted by UNet, Att-UNet, Swin-UNet and WA-MSPNet; (e)-(h) The error maps of \begin{document}$ D(x,y) $\end{document} predicted by four networks; (i)-(l) The error maps of the phase predicted by four networks
    Predication of different networks under fringe pattern with multi object. (a), (e), (i) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by UNet; (b), (f), (j) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by Att-UNet; (c), (g), (k) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by Swin-UNet; (d), (h), (l) \begin{document}$ M(x,y) $\end{document}, \begin{document}$ D(x,y) $\end{document}, and phase predicted by WA-MSPNet
    Error maps of different networks under fringe pattern with multi object. (a)-(d) The error maps of \begin{document}$ M(x,y) $\end{document} predicted by UNet, Att-UNet, Swin-UNet and WA-MSPNet; (e)-(h) The error maps of \begin{document}$ D(x,y) $\end{document} predicted by four networks; (i)-(l) The error maps of the phase predicted by four networks
    • Table 1. Generalization Performance Comparison of different networks on the test dataset

      View table
      View in Article

      Table 1. Generalization Performance Comparison of different networks on the test dataset

      Model$ M(x,y) $& $ D(x,y) $ componentFinal phase
      MAERMSEPSNRMAERMSEPSNR
      UNet0.0030430.00733041.6880.0049560.01155741.328
      Att-UNet0.0028700.00746541.3090.0041400.01149441.215
      Swin-UNet0.0046890.01269136.5820.0070790.01901836.682
      WA-MSPNet0.0025890.00705041.8410.0039270.01086441.694
    • Table 2. Comparison of different networks on parameters and FLOPs

      View table
      View in Article

      Table 2. Comparison of different networks on parameters and FLOPs

      ModelParametersFLOPs
      UNet34.527 M225.248 G
      Att-UNet34.879 M229.061 G
      Swin-UNet97.647 M97.222 G
      WA-MSPNet14.509 M152.566 G
    • Table 3. Comparison of inference time for a single image

      View table
      View in Article

      Table 3. Comparison of inference time for a single image

      ModelInference time/ms
      UNet19.74
      Att-UNet20.35
      Swin-UNet27.84
      WA-MSPNet17.59
    • Table 4. Generalization performance comparison of different networks on the test dataset with additive noise

      View table
      View in Article

      Table 4. Generalization performance comparison of different networks on the test dataset with additive noise

      $ M(x,y) $ & $ D(x,y) $ componentFinal phase
      MAERMSEPSNRMAERMSEPSNR
      $ \mathrm{\sigma }=0.01 $UNet0.0053700.00912939.6140.0082640.01428539.332
      Att-UNet0.0050460.00898539.5320.0075490.01390839.385
      Swin-UNet0.0065620.01365335.8840.0097710.02048035.976
      WA-MSPNet0.0047540.00858539.9610.0070830.01316139.850
      $ \sigma =0.05 $UNet0.0378360.04710025.6450.0575910.07259825.332
      Att-UNet0.0305300.03878327.0150.0423720.05534727.634
      Swin-UNet0.0213320.02910929.2750.0310970.04338029.426
      WA-MSPNet0.0202610.02666030.3990.0296040.04001130.457
      $ \sigma =0.10 $UNet0.0528400.06440423.3760.0775520.09562723.109
      Att-UNet0.0587050.07064521.8140.0810910.09914822.558
      Swin-UNet0.0498320.06320223.6650.0715770.08959723.774
      WA-MSPNet0.0460640.05678224.0850.0669820.08329224.224
    • Table 5. Configuration of models in ablation study

      View table
      View in Article

      Table 5. Configuration of models in ablation study

      ModuleABCDEWA-MSPNet
      MSAPΠΠΠ
      WTΠΠΠΠ
      HAΠΠ
    • Table 6. Comparison of models in ablation experiments

      View table
      View in Article

      Table 6. Comparison of models in ablation experiments

      $ M(x,y) $ & $ D(x,y) $ componentFinal phase
      MAERMSEPSNRMAERMSEPSNR
      Base model A0.0031840.00741141.3500.0050010.01144841.187
      Sub-model B0.0027790.00724741.5520.0043330.01120541.385
      Sub-model C0.0028390.00770341.0330.0043510.01172441.018
      Sub-model D0.0026990.00724641.5630.0040070.01115341.442
      Sub-model E0.0027480.00721241.6110.0041380.01115941.443
      WA-MSPNet0.0025890.00705041.8410.0039270.01086441.694
    Tools

    Get Citation

    Copy Citation Text

    Jianhua SHANG, Gang WANG, Yang LIU, Haiqin XU, Jiatong SUN. Multi-scale phase extraction network for structured light based on discrete wavelet transform and attention mechanism[J]. Infrared and Laser Engineering, 2025, 54(6): 20250076

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging, display and information processing

    Received: Jan. 24, 2025

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email:

    DOI:10.3788/IRLA20250076

    Topics