Chinese Optics Letters, Volume. 19, Issue 8, 083201(2021)

Proposal for experimentally observing expectant ball lightning

Silin Guo1, Zhongpeng Li1,2, Chuliang Zhou1,2, and Ye Tian1,2、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(27)

    [1] M. Rycroft. Book review: V. A. Rakov and M. A. Uman, lightning: physics and effects, Cambridge University Press, Cambridge, U.K. 2003, 687 pp. ISBN 0-521-58327-6, 160. Sur. Geophys., 25, 545(2004).

    [2] Y. Liu, T.-J. Wang, N. Chen, G. Hao, H. Sun, L. Zhang, Z. Qi, Z. Wang, R. Li. Simultaneous generation of controllable double white light lasers by focusing an intense femtosecond laser pulse in air. Chin. Opt. Lett., 18, 121402(2020).

    [3] D. Zhou, X. Zhang, Q. Lu, Q. Liang, Y. Liu. Time-resolved study of the lasing emission from high vibrational levels of N2+ pumped with circularly polarized femtosecond pulses. Chin. Opt. Lett., 18, 023201(2020).

    [4] D. Umemoto, H. Tsuchiya, T. Enoto, S. Y. Yamada, T. Yuasa, M. Kawaharada, T. Kitaguchi, K. Nakazawa, M. Kokubun, H. Kato, M. Okano, T. Tamagawa, K. Makishima. On-ground detection of an electron-positron annihilation line from thunderclouds. Phys. Rev. E, 93, 021201(R)(2016).

    [5] M. Shmatov. Possible detection of high-energy photons from ball lightning. Phys. Rev. E, 99, 043203(2019).

    [6] V. Torchigin. Physical phenomena responsible for stability and spherical form of ball lightning. Optik, 219, 165098(2020).

    [7] V. Torchigin, A. V. Torchigin. Simple explanation of physical nature of ball lightning. Optik, 203, 164013(2020).

    [8] M. Shmatov, K. D. Stephan. Advances in ball lightning research. J. Atmos. Solar-Terrest. Phys., 195, 105115(2019).

    [9] M. L. Shmatov. New model and estimation of the danger of ball lightning. J. Plasma Phys., 69, 507(2003).

    [10] H. C. Wu. Relativistic-microwave theory of ball lightning. Sci. Rep., 6, 28263(2016).

    [11] A. Ranada, M. Soler, J. L. Trueba. Ball lightning as a force-free magnetic knot. Phys. Rev. E, 62, 7181(2000).

    [12] A. Ranada, J. L. Trueba. Ball lightning an electromagnetic knot?. Nature, 383, 32(1996).

    [13] A. I. Egorov, S. I. Stepanov. Properties of short-living ball lightning produced in the laboratory. Tech. Phys., 53, 688(2008).

    [14] J. A. Menéndez, E. J. Juárez-Pérez, E. Ruisánchez, J. M. Bermúdez, A. Arenillas. Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon, 49, 346(2011).

    [15] G. D. Shabanov. On the possibility of making natural ball lightning using a new pulse discharge type in the laboratory. Physics-Uspekhi, 62, 92(2019).

    [16] G. Dawson, R. Jones. Ball lightning as a radiation bubble. Pure Appl. Geophys., 75, 247(1969).

    [17] N. Naumova, S. Bulanov, T. Esirkepov, D. Farina, K. Nishihara, F. Pegoraro, H. Ruhl, A. Sakharov. Formation of electromagnetic postsolitons in plasmas. Phys. Rev. Lett., 87, 185004(2001).

    [18] X. Zheng. Quantitative analysis for ball lightning. Phys. Lett. A, 148, 463(1990).

    [19] J. Zhang, D. Zhang, Y. Fan, J. He, X. Ge, X. Zhang, J. Ju, T. Xun. Progress in narrowband high-power microwave sources. Phys. Plasmas, 27, 010501(2020).

    [20] T. Esirkepov, K. Nishihara, S. V. Bulanov, F. Pegoraro. Three-dimensional relativistic electromagnetic subcycle solitons. Phys. Rev. Lett., 89, 275002(2002).

    [21] W. Zhu, J. P. Palastro, T. M. Antonsen. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations. Phys. Plasmas, 20, 073103(2013).

    [22] M. Borghesi, S. Bulanov, D. H. Campbell, R. J. Clarke, T. Z. Esirkepov, M. Galimberti, L. A. Gizzi, A. J. MacKinnon, N. M. Naumova, F. Pegoraro, H. Ruhl, A. Schiavi, O. Willi. Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett., 88, 135002(2002).

    [23] S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, A. S. Sakharov. Nonlinear depletion of ultrashort and relativistically strong laser-pulses in an underdense plasma. Phys. Fluids B, 4, 1935(1992).

    [24] S. V. Bulanov, T. Z. Esirkepov, N. M. Naumova, F. Pegoraro, V. A. Vshivkov. Solitonlike electromagnetic waves behind a superintense laser pulse in a plasma. Phys. Rev. Lett., 82, 3440(1999).

    [25] B. Zhu, Y.-C. Wu, K.-G. Dong, W. Hong, J. Teng, W.-M. Zhou, L.-F. Cao, Y.-Q. Gu. Observation of a strong correlation between electromagnetic soliton formation and relativistic self-focusing for ultra-short laser pulses propagating through an under-dense plasma. Phys. Plasmas, 19, 102304(2012).

    [26] Y. Zeng, Z. Chuliang, L. Song, X. Lu, Z. Li, Y. Ding, Y. Bai, Y. Xu, Y. Tian, J. Liu, R. Li, Z. Xu. Guiding and emission of millijoule single-cycle THz pulse from laser driven wire-like targets. Opt. Express, 28, 15258(2020).

    [27] S. Feng, L. Dong, T. Wu, Y. Tan, R. Zhang, L. Zhang, C. Zhang, Y. Zhao. Terahertz wave emission from water lines. Chin. Opt. Lett., 18, 023202(2020).

    Tools

    Get Citation

    Copy Citation Text

    Silin Guo, Zhongpeng Li, Chuliang Zhou, Ye Tian, "Proposal for experimentally observing expectant ball lightning," Chin. Opt. Lett. 19, 083201 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ultrafast Optics and Attosecond/High-field Physics

    Received: Nov. 11, 2020

    Accepted: Feb. 2, 2021

    Published Online: Apr. 27, 2021

    The Author Email: Ye Tian (tianye@siom.ac.cn)

    DOI:10.3788/COL202119.083201

    Topics