Laser & Optoelectronics Progress, Volume. 62, Issue 19, 1900002(2025)
Research Progress in Magnetic Field-Assisted Laser Fabrication of Microholes
Fig. 1. Confinement effect of magnetic field on plasma[9]. (a) Schematic of binding effect of transverse magnetic field on laser-induced plasma; (b) schematic of binding effect of electromagnetic force on plasma
Fig. 3. Schematic of different stages of water-based transverse magnetic field-assisted femtosecond laser drilling[11]. (a) Blind hole; (b) through hole; (c) schematic after laser irradiation
Fig. 4. Schematic for a single charge motion in laser-induced plasma within a transverse magnetic field[12]
Fig. 6. Experimental equipment and devices. (a) Magnetic field-assisted laser drilling device[13]; (b) water-based magnetic field-assisted laser drilling device[11]; (c) rotating magnetic field-assisted laser drilling device[14]; (d) real-time monitoring system of ultrasonic vibration-magnetic field-assisted laser drilling[15]
Fig. 7. Surface morphologies of microholes under different single pulse energies (I‒VI correspond to pulse energies of 20‒140 μJ, respectively)[12]. (a) 0 mT; (b) 70 mT; (c) 110 mT
Fig. 8. Effect of current on laser-induced plasma[19]. (a) Without current; (b) with current
Fig. 9. SEM photos and EDS elemental analysis diagrams of copper laser drilling with or without current assistance[19]. (a) Without current; (b) with 0.5 A current
Fig. 10. Cross sections of holes drilled at the laser power 2200 W[20]. (a) No electromagnetic field; (b) static magnetic field; (c) rotating magnetic field; (d) static electromagnetic field; (e) rotating electromagnetic field
Fig. 11. SEM images of splashing at microhole entrance with different processing methods[22]. (a) Laser direct processing; (b) rotating magnetic field-assisted processing with speed of 50 r/min; (c) rotating magnetic field-assisted processing with speed of 150 r/min; (d) rotating magnetic field-assisted processing with speed of 250 r/min
Fig. 12. Effect of a rotating magnetic field on hole entrances and exits obtained by femtosecond laser layered spiral hole-cutting operations[14]. (a) Without assistance; (b) assisted by rotating magnetic field
Fig. 13. Schematic of magnetic field-assisted laser-induced plasma micromachining[23]. (a) Transverse magnetic field; (b) vertical magnetic field
Fig. 14. Ellipse fitting of plasma images and plasma edge profiles in water with or without transverse magnetic field[23]. (a) 0 T; (b) 0.05 T; (c) 0.10 T; (d) 0.15 T; (e) 0.20 T; (f) 0.30 T
Fig. 15. Ellipse fitting of plasma images and plasma edge profiles in water with or without longitudinal magnetic field[23]. (a) 0 T; (b) 0.05 T; (c) 0.10 T; (d) 0.15 T; (e) 0.20 T; (f) 0.30 T
Fig. 16. Hole section images and surface roughness under different drilling conditions[10]
Fig. 17. SEM images of the cross-section for four laser drilling modes[25]. (a) Unassisted laser drilling in air; (b) magnetic field-assisted laser drilling; (c) ultrasonic-assisted laser drilling; (d) ultrasonic-magnetic field-assisted laser drilling
Get Citation
Copy Citation Text
Qing Lin, Xiaofeng Liu, Jianrong Qiu. Research Progress in Magnetic Field-Assisted Laser Fabrication of Microholes[J]. Laser & Optoelectronics Progress, 2025, 62(19): 1900002
Category: Reviews
Received: Dec. 17, 2024
Accepted: Feb. 18, 2025
Published Online: Sep. 26, 2025
The Author Email: Qing Lin (linqing@squ.edu.cn), Xiaofeng Liu (xfliu@zju.edu.cn)
CSTR:32186.14.LOP242442