Optics and Precision Engineering, Volume. 30, Issue 19, 2379(2022)

Global hand pose estimation based on pixel voting

Jingang LIN, Dongnian LI*, Chengjun CHEN, and Zhengxu ZHAO
Author Affiliations
  • School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao266520, China
  • show less
    References(27)

    [1] TKACH A, TAGLIASACCHI A, REMELLI E et al. Online generative model personalization for hand tracking[J]. ACM Transactions on Graphics, 36, 243(2017).

    [2] [2] 2李东年, 周以齐. 采用改进粒子群优化粒子滤波的三维人手跟踪[J]. 光学 精密工程, 2014, 22(10): 2870-2878. doi: 10.3788/ope.20142210.2870LID N, ZHOUY Q. Three dimensional hand tracking by improved particle swarm optimized particle filter[J]. Opt. Precision Eng., 2014, 22(10): 2870-2878.(in Chinese). doi: 10.3788/ope.20142210.2870

    [3] TANG X, WANG T Y, FU C W. Towards accurate alignment in real-time 3D hand-mesh reconstruction[C], 11678-11687(2021).

    [4] XIONG F, ZHANG B S, XIAO Y et al. A2J: anchor-to-joint regression network for 3D articulated pose estimation from a single depth image[C], 793-802(2019).

    [5] TAYLOR J, TANKOVICH V, TANG D H et al. Articulated distance fields for ultra-fast tracking of hands interacting[J]. ACM Transactions on Graphics, 36, 244(2017).

    [6] KREJOV P, GILBERT A, BOWDEN R. Guided optimisation through classification and regression for hand pose estimation[J]. Computer Vision and Image Understanding, 155, 124-138(2017).

    [7] CHEN X H, WANG G J, GUO H K et al. Pose guided structured region ensemble network for cascaded hand pose estimation[J]. Neurocomputing, 395, 138-149(2020).

    [8] CHENG W C, PARK J H, KO J H. HandFoldingNet: a 3D hand pose estimation network using multiscale-feature guided folding of a 2D hand skeleton[C], 11240-11249(2021).

    [9] REN P F, SUN H F, HUANG W T et al. Spatial-aware stacked regression network for real-time 3D hand pose estimation[J]. Neurocomputing, 437, 42-57(2021).

    [10] [10] 10李伟强, 雷航, 张静玉, 等. 基于标签分布学习的三维手部姿态估计[J]. 计算机应用, 2021, 41(2): 550-555.LIW Q, LEIH, ZHANGJ Y, et al. 3D hand pose estimation based on label distribution learning[J]. Journal of Computer Applications, 2021, 41(2): 550-555.(in Chinese)

    [11] HUANG W T, REN P F, WANG J Y et al. AWR: adaptive weighting regression for 3D hand pose estimation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11061-11068(2020).

    [12] [12] 12危德健, 王文明, 王全玉, 等. 改进的基于锚点的三维手部姿态估计网络[J]. 计算机应用, 2022, 42(3): 953-959.WEID J, WANGW M, WANGQ Y, et al. Improved 3D hand pose estimation network based on anchor[J]. Journal of Computer Applications, 2022, 42(3): 953-959.(in Chinese)

    [13] MOON G, LEE K M. I2L-MeshNet: image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image[C], 752-768(2020).

    [14] [14] 14熊杰, 彭军, 杨文姬, 等. 多尺度高分辨率保持和视角不变的手姿态估计[J]. 计算机工程与应用, 2021, 57(14): 148-157. doi: 10.3778/j.issn.1002-8331.2004-0078XIONGJ, PENGJ, YANGW J, et al. Multi-scale high-resolution preserving and perspective-invariant hand pose estimation[J]. Computer Engineering and Applications, 2021, 57(14): 148-157.(in Chinese). doi: 10.3778/j.issn.1002-8331.2004-0078

    [16] SHARP T, KESKIN C, ROBERTSON D et al. Accurate, robust, and flexible real-time hand tracking[C], 3633-3642(2015).

    [17] LIANG H, YUAN J S, LEE J et al. Hough forest with optimized leaves for global hand pose estimation with arbitrary postures[J]. IEEE Transactions on Cybernetics, 49, 527-541(2019).

    [18] RUIZ N, CHONG E, REHG J M. Fine-grained head pose estimation without keypoints[C], 2155-215509(2018).

    [19] YANG T Y, CHEN Y T, LIN Y et al. FSA-net: learning fine-grained structure aggregation for head pose estimation from a single image[C], 1087-1096(2019).

    [20] [20] 20车云龙, 齐越. 基于深度图像的手部姿态估计综述[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1635-1648. doi: 10.3724/sp.j.1089.2021.18788CHEY L, QIY. A survey on depth based hand pose estimation[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(11): 1635-1648.(in Chinese). doi: 10.3724/sp.j.1089.2021.18788

    [21] CHEN L C, ZHU Y K, PAPANDREOU G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C], 801-818(2018).

    [22] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [23] [23] 23徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积 ResNet遥感图像建筑物分割[J]. 光学 精密工程, 2020, 28(7): 1588-1599. doi: 10.37188/ope.20202807.1588XUSH J, OUYANGP Y, GUOX Y, et al. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Opt. Precision Eng., 2020, 28(7): 1588-1599.(in Chinese). doi: 10.37188/ope.20202807.1588

    [24] RUSSAKOVSKY O, DENG J, SU H et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 115, 211-252(2015).

    [25] [25] 25刘桂雄, 黄坚. 基于标签预留Softmax算法的机器视觉检测鉴别语义分割迁移学习技术[J]. 光学 精密工程, 2022, 30(1): 117-125. doi: 10.37188/OPE.20223001.0117LIUG X, HUANGJ. Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms[J]. Optics and Precision Engineering, 2022, 30(1): 117-125.(in Chinese). doi: 10.37188/OPE.20223001.0117

    [26] ZHOU Y, BARNES C, LU J W et al. On the continuity of rotation representations in neural networks[C], 5738-5746(2019).

    [27] XIANG Y, SCHMIDT T, NARAYANAN V et al. Posecnn: A Convolutional Neural Network for 6D Object Pose Estimation In Cluttered Scenes[webpage]. arXiv preprint(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jingang LIN, Dongnian LI, Chengjun CHEN, Zhengxu ZHAO. Global hand pose estimation based on pixel voting[J]. Optics and Precision Engineering, 2022, 30(19): 2379

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 16, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: Dongnian LI (dongnianli@qut.edu.cn)

    DOI:10.37188/OPE.20223019.2379

    Topics