Acta Photonica Sinica, Volume. 52, Issue 5, 0552203(2023)
Research Advance in Astronomical High-precision Wavelength Calibration Technology(Invited)
[1] MAO S, PACZYNSKI B. Gravitational microlensing by double stars and planetary systems[J]. The Astrophysical Journal, 374, L37(1991).
[2] GOULD A, LOEB A. Discovering planetary systems through gravitational microlenses[J]. The Astrophysical Journal, 396, 104(1992).
[3] SOUTHWORTH J. Homogeneous studies of transiting extrasolar planets-I. Light-curve analyses[J]. Monthly Notices of the Royal Astronomical Society, 386, 1644-1666(2008).
[4] TORRES G, WINN J, HOLMAN M. Improved parameters for extrasolar transiting planets[J]. The Astrophysical Journal, 677, 1324(2008).
[5] MAROIS C, MACINTOSH B, BARMAN T et al. Direct imaging of multiple planets orbiting the star HR 8799[J]. Science, 322, 1348-1352(2008).
[6] WAGNER K, APAI D, KASPER M et al. Direct imaging discovery of a Jovian exoplanet within a triple-star system[J]. Science, 353, 673-678(2016).
[7] MAYOR M, LOVIS C, SANTOS N C. Doppler spectroscopy as a path to the detection of Earth-like planets[J]. Nature, 513, 328-335(2014).
[8] MAYOR M, QUELOZ D. A Jupiter-mass companion to a solar-type star[J]. Nature, 378, 355-359(1995).
[9] PEPE F, EHRENREICH D, MEYER M. Instrumentation for the detection and characterization of exoplanets[J]. Nature, 513, 358-366(2014).
[10] WILKEN T, LOVIS C, MANESCAU A et al. High-precision calibration of spectrographs[J]. Monthly Notices of the Royal Astronomical Society: Letters, 405, L16-L20(2010).
[11] LISKE J, GRAZIAN A, VANZELLA E et al. Cosmic dynamics in the era of extremely large telescopes[J]. Monthly Notices of the Royal Astronomical Society, 386, 1192-1218(2008).
[12] FISCHER D, ANGLADA-ESCUDE G, ARRIAGADA P et al. State of the field: extreme precision radial velocities[J]. Publications of the Astronomical Society of the Pacific, 128, 66001(2016).
[13] LOVIS C, PEPE F. A new list of thorium and argon spectral lines in the visible[J]. Astronomy & Astrophysics, 468, 1115-1121(2007).
[14] LOVIS C, PEPE F, BOUCHY F et al. The exoplanet hunter HARPS: unequalled accuracy and perspectives toward 1 cm s·1 precision[C], 6269, 249-257(2006).
[15] UDEM T, HOLZWARTH R, HÄNSCH T. Optical frequency metrology[J]. Nature, 416, 233-237(2002).
[16] STEINMETZ T, WILKEN T, ARAUJO-HAUCK C et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).
[17] LI C, BENEDICK A, FENDEL P et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)[J]. Nature, 452, 610-612(2008).
[18] WILKEN T, CURTO G, PROBST R A et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level[J]. Nature, 485, 611-614(2012).
[19] GLENDAY A, LI C, LANGELLIER N et al. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph[J]. Optica, 2, 250-254(2015).
[20] LEMKE U, CORBETT J, ALLINGTON-SMITH J et al. Modal noise prediction in fibre spectroscopy-Ⅰ. Visibility and the coherent model[J]. Monthly Notices of the Royal Astronomical Society, 417, 689-697(2011).
[21] SPRONCK J, KAPLAN Z, FISCHER D et al. Extreme Doppler precision with octagonal fiber scramblers[C], 8446, 1210-1219(2012).
[22] MCCOY K, RAMSEY L, MAHADEVAN S et al. Optical fiber modal noise in the 0.8 to 1.5 micron region and implications for near infrared precision radial velocity measurements[C], 8446, 1161-1168(2012).
[23] PROBST R, CURTO G, ÁVILA G et al. Relative stability of two laser frequency combs for routine operation on HARPS and FOCES[C], 9908, 1839-1854(2016).
[24] PROBST R, MILAKOVIĆ D, TOLEDO-PADRÓN B et al. A crucial test for astronomical spectrograph calibration with frequency combs[J]. Nature Astronomy, 4, 603-608(2020).
[25] CAMPBELL B, WALKER G. Precision radial velocities with an absorption cell[J]. Publications of the Astronomical Society of the Pacific, 91, 540(1979).
[26] KAMBE E, SATO B, TAKEDA Y et al. Development of iodine cells for the subaru HDS and the okayama HIDES: I. instrumentation and performance of the spectrographs[J]. Publications of the Astronomical Society of Japan, 54, 865-871(2002).
[27] FISCHER D, MARCY G, SPRONCK J. The twenty-five year lick planet search[J]. The Astrophysical Journal Supplement Series, 210, 5(2014).
[28] BUTLER R, MARCY G, WILLIAMS E et al. Attaining doppler precision of 3 M S-1[J]. Publications of the Astronomical Society of the Pacific, 108, 500(1996).
[29] ENDL M, KÜRSTER M, ELS S et al. The planet search program at the ESO Coudé Echelle spectrometer[J]. Astronomy and Astrophysics, 392, 671-690(2002).
[30] BUTLER R, TINNEY C, MARCY G et al. Two new planets from the anglo-australian planet search[J]. The Astrophysical Journal, 555, 410(2001).
[31] TOKOVININ A, FISCHER D, BONATI M et al. CHIRON—a fiber fed spectrometer for precise radial velocities[J]. Publications of the Astronomical Society of the Pacific, 125, 1336(2013).
[32] WANG S, WRIGHT J, MACQUEEN P et al. Calibrating iodine cells for precise radial velocities[J]. Publications of the Astronomical Society of the Pacific, 132, 014503(2020).
[33] SARMIENTO L, REINERS A, SEEMANN U et al. Characterizing U-Ne hollow cathode lamps at near-IR wavelengths for the CARMENES survey[C], 9147, 1669-1677(2014).
[34] KERBER F, NAVE G, SANSONETTI C et al. The spectrum of Th-Ar hollow-cathode lamps in the 900-4 500 nm region: establishing wavelength standards for the calibration of VLT spectrographs[C], 6269, 850-860(2006).
[35] PEPE F, MAYOR M, RUPPRECHT G et al. HARPS: ESO's coming planet searcher: chasing exoplanets with the La Silla 3.6-m telescope[J]. The Messenger, 110, 9-14(2002).
[36] BONFILS X, FORVEILLE T, DELFOSSE X et al. The HARPS search for southern extra-solar planets[J]. Astronomy and Astrophysics, 443, L15-L18(2005).
[37] PEPE F, LOVIS C, SÉGRANSAN D et al. The HARPS search for Earth-like planets in the habitable zone[J]. Astronomy and Astrophysics, 534, A58(2011).
[38] PERRUCHOT S, KOHLER D, BOUCHY F et al. The SOPHIE spectrograph: design and technical key-points for high throughput and high stability[C], 7014, 235-246(2008).
[39] CHAKRABORTY A, MAHADEVAN S, ROY A et al. The PRL stabilized high-resolution echelle fiber-fed spectrograph: instrument description and first radial velocity results[J]. Publications of the Astronomical Society of the Pacific, 126, 133(2014).
[40] NAVE G, KERBER F, DEN HARTOG E et al. The dirt in astronomy's genie lamp: ThO contamination of Th-Ar calibration lamps[C], 10704, 80-92(2018).
[41] DREVER R, HALL J, KOWALSKI F et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B Photophysics and Laser Chemistry, 31, 97-105(1983).
[42] DOERR H, STEINMETZ T, HOLZWARTH R et al. A laser frequency comb system for absolute calibration of the VTT echelle spectrograph[J]. Solar Physics, 280, 663-670(2012).
[43] PROBST R, WANG L, DOERR H et al. Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel[J]. New Journal of Physics, 17, 023048(2015).
[44] PHILLIPS D, GLENDAY A, LI C et al. Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb[J]. Optics Express, 20, 13711-13726(2012).
[45] YCAS G, QUINLAN F, DIDDAMS S et al. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb[J]. Optics Express, 20, 6631-6643(2012).
[46] WU Yuanjie, YE Huiqi, HAN Jian et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope[J]. Acta Optica Sinica, 36, 0614001(2016).
[47] HAO Z, YE H, HAN J et al. Calibration tests of a 25-GHz mode-spacing broadband astro-comb on the fiber-fed High Resolution Spectrograph (HRS) of the chinese 2.16-m telescope[J]. Publications of the Astronomical Society of the Pacific, 130, 125001(2018).
[48] LÖHNER-BöTTCHER J, SCHMIDT W, DOERR H et al. LARS: an absolute reference spectrograph for solar observations[J]. Astronomy & Astrophysics, 607-12(2017).
[49] MCCRACKEN R, DEPAGNE E, KUHN R et al. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm[J]. Optics Express, 25, 6450-6460(2017).
[50] PETERSBURG R, JOEL ONG J, ZHAO L et al. An extreme-precision radial-velocity pipeline: first radial velocities from EXPRES[J]. The Astronomical Journal, 159, 187(2020).
[51] BLACKMAN R, FISCHER D, JURGENSON C et al. Performance verification of the extreme precision spectrograph[J]. The Astronomical Journal, 159, 238(2020).
[52] CURTO G L O, WEBB J, PASQUINI L et al. Precision and consistency of astrocombs[J]. Monthly Notices of the Royal Astronomical Society, 493, 3997-4011(2020).
[53] WANG L, GRUPP F, KELLERMANN H et al. Line profile analysis of the laser frequency comb in FOCES[C], 10400, 532-539(2017).
[54] PEPE F, MOLARO P, CRISTIANI S et al. ESPRESSO: the next European exoplanet hunter[J]. Astronomische Nachrichten, 335, 8-20(2014).
[55] SCHMIDT T, MOLARO P, MURPHY M et al. Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant[J]. Astronomy & Astrophysics, 646, A144(2021).
[56] MURPHY M, MOLARO P, LEITE A et al. Fundamental physics with ESPRESSO: precise limit on variations in the fine-structure constant towards the bright quasar HE 0515-4414[J]. Astronomy & Astrophysics, 658, A123(2022).
[57] PROBST R, CURTO G, AVILA G et al. A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS[C], 9147, 498-509(2014).
[58] CRAUSE L, MCCRACKEN R, REID D et al. Development of a laser frequency comb and precision radial velocity pipeline for SALT's HRS[C], 12184, 1589-1596(2022).
[59] WU Y, HUANG Z, STEINMETZ T et al. 20 GHz astronomical laser frequency comb with super-broadband spectral coverage[C], 12184, 1J(2022).
[60] CHENG Y, XIAO D, MCCRACKEN R et al. Laser-frequency-comb calibration for the Extremely Large Telescope: an OPO-based infrared astrocomb covering the H and J bands[J]. Journal of the Optical Society of America B, 38, A15-A20(2021).
[61] CAMPBELL B. Precision radial velocities[J]. Publications of the Astronomical Society of the Pacific, 95, 577(1983).
[62] DEVOE R G, FABRE C, JUNGMANN K et al. Precision optical-frequency-difference measurements[J]. Physical Review A, 37, 1802-1805(1988).
[63] WILDI F, PEPE F, CHAZELAS B et al. A Fabry-Perot calibrator of the HARPS radial velocity spectrograph: performance report[C], 7735, 1853-1863(2010).
[64] WILDI F, PEPE F, CHAZELAS B et al. The performance of the new Fabry-Perot calibration system of the radial velocity spectrograph HARPS[C], 8151, 535-543(2011).
[65] WILDI F, CHAZELAS B, PEPE F. A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs[C], 8446, 1122-1129(2012).
[66] SCHÄFER S, REINERS A. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared[C], 8446, 1306-1313(2012).
[67] QUIRRENBACH A, AMADO P, CABALLERO J et al. CARMENES: an overview six months after first light[C], 9908, 296-309(2016).
[68] QUIRRENBACH A, AMADO P, RIBAS I et al. CARMENES: high-resolution spectra and precise radial velocities in the red and infrared[C], 10702, 246-263(2018).
[69] HALVERSON S, MAHADEVAN S, RAMSEY L et al. Development of fiber Fabry-Perot interferometers as stable near-infrared calibration sources for high resolution spectrographs[J]. Publications of the Astronomical Society of the Pacific, 126, 445-458(2014).
[70] STRASSMEIER K, ILYIN I, STEFFEN M. PEPSI deep spectra[J]. Astronomy & Astrophysics, 612, A44(2018).
[71] STRASSMEIER K, ILYIN I, JÄRVINEN A et al. PEPSI: The high-resolution échelle spectrograph and polarimeter for the large binocular telescope[J]. Astronomische Nachrichten, 336, 324-361(2015).
[72] BETTERS C, HERMOUET M, BLANC T et al. Low cost photonic comb for sub-m/s wavelength calibration[C], 9912, 2156-2162(2016).
[73] DAS T, BANYAL R, SIVARANI T et al. Development of a stabilized Fabry-Perot etalonbased calibrator for Hanle echelle spectrograph[J]. Applied Optics, 59, 5464-5472(2020).
[74] TERRIEN R, NINAN J, DIDDAMS S et al. Broadband stability of the habitable zone planet finder Fabry-Pérot etalon calibration system: evidence for chromatic variation[J]. The Astronomical Journal, 161, 252(2021).
[75] CERSULLO F, WILDI F, CHAZELAS B et al. A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph[J]. Astronomy & Astrophysics, 601, 1-12(2017).
[76] SEIFAHRT A, BEAN J, KASPER D et al. MAROON-X: the first two years of EPRVs from Gemini North[C], 12184, 498-512(2022).
[77] HAO J, TANG L, YE H et al. Development of a calibrator based on Fabry-Pérot etalon for high resolution spectrograph[C](2021).
[78] HAO J, TANG L, YE H et al. Effect of near-field distribution on transmission characteristics of fiber-fed Fabry-Perot etalons[J]. The Astronomical Journal, 161, A102(2021).
[79] TANG L, YE H, HAO J et al. Design and characterization of a thermally stabilized fiber Fabry-Perot etalon as a wavelength calibrator for high-precision spectroscopy[J]. Applied Optics, 60, D1-D8(2021).
[80] LEIFER S, SAVCHENKOV A, AMILI AEL et al. A microresonator-based etalon for visible light precision radial velocity measurements[C], 11447, 326-336(2020).
[81] SCHWAB C, STüRMER J, GUREVICH Y et al. Stabilizing a Fabry-Perot etalon peak to 3 cm s-1 for spectrograph calibration[J]. Publications of the Astronomical Society of the Pacific, 127, 880-889(2015).
[82] STüRMER J, SEIFAHRT A, SCHWAB C et al. Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s·1 level[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 3, 54206397(2017).
[83] CRASS J, AIKENS D, MASON J et al. The final design of the iLocater spectrograph: an optimized architecture for diffraction-limited EPRV instruments[C], 12184, 579-589(2022).
[84] REINERS A, BANYAL R, ULBRICH R. A laser-lock concept to reach cm s-1-precision in Doppler experiments with Fabry-Pérot wavelength calibrators[J]. Astronomy & Astrophysics, 569, A77(2014).
[85] BANYAL R, REINERS A. A dual cavity Fabry-Perot device for high precision Doppler measurements in astronomy[J]. Journal of Astronomical Instrumentation, 6, 1750001(2017).
[86] SCHMIDT T, CHAZELAS B, LOVIS C et al. Chromatic drift of the Espresso Fabry-Pérot etalon[J]. Astronomy & Astrophysics, 664, A191(2022).
[87] JENNINGS J, TERRIEN R, FREDRICK C et al. Frequency stability of the mode spectrum of broad bandwidth Fabry-Pérot interferometers[J]. OSA Continuum, 3, 1177-1193(2020).
[88] BAUER F, ZECHMEISTER M, REINERS A. Calibrating echelle spectrographs with Fabry-Pérot etalons[J]. Astronomy & Astrophysics, 581, A117(2015).
[89] CERSULLO F, COFFINET A, CHAZELAS B et al. New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons[J]. Astronomy & Astrophysics, 624, A122(2019).
[90] HAO Zhibo, YE Huiqi, TANG Liang et al. Improvement of wavelength calibration accuracy of astronomical high-resolution spectrometers with Fabry-Perot etalons[J]. Acta Optica Sinica, 42, 0112001(2022).
[91] SCHUERMANS J, RASKIN G, BOWMAN D et al. CubeSpec: LED-based calibration system[C], 12180, 1064-1072(2022).
[92] KOBAYASHI T, SUETA T, CHO Y et al. High‐repetition‐rate optical pulse generator using a Fabry‐Perot electro‐optic modulator[J]. Applied Physics Letters, 21, 341-343(1972).
[93] KOBAYASHI T, YAO H, AMANO K et al. Optical pulse compression using high-frequency electrooptic phase modulation[J]. IEEE Journal of Quantum Electronics, 24, 382-387(1988).
[94] METCALF A, ANDERSON T, BENDER C et al. Stellar spectroscopy in the near-infrared with a laser frequency comb[J]. Optica, 6, 233-239(2019).
[95] YI X, VAHALA K, LI J et al. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy[J]. Nature Communications, 7, 10436(2016).
[96] OBRZUD E, RAINER M, HARUTYUNYAN A et al. Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb[J]. Optics Express, 26, 34830-34841(2018).
[97] SERIZAWA T, KUROKAWA T, TANAKA Y et al. Laser frequency comb system for the infrared Doppler spectrograph on the Subaru Telescope[C], 12188, 1689-1695(2022).
[98] ISHIZAWA A, NISHIKAWA T, MIZUTORI A et al. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser[J]. Optics Express, 21, 29186-29194(2013).
[99] TANABE T, FUJII S, SUZUKI R. Review on microresonator frequency combs[J]. Japanese Journal of Applied Physics, 58, SJ0801(2019).
[100] HERR T, BRASCH V, JOST J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-52(2013).
[101] ZHANG Xinliang, ZHAO Yanjing. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).
[102] KIPPENBERG T, GAETA A, LIPSON M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).
[103] NEWMAN Z, MAURICE V, DRAKE T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).
[104] OBRZUD E, RAINER M, HARUTYUNYAN A et al. A microphotonic astrocomb[J]. Nature Photonics, 13, 31-35(2018).
[105] SUH M, YI X, LAI Y et al. Searching for exoplanets using a microresonator astrocomb[J]. Nature Photonics, 13, 25-30(2019).
[106] BARTELS A, HEINECKE D, DIDDAMS S. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser[J]. Optics Letters, 33, 1905-1907(2008).
[107] CHEN H, CHANG G, XU S et al. 3GHz, fundamentally mode-locked, femtosecond Yb-fiber laser[J]. Optics Letters, 37, 3522-3524(2012).
[108] MÉGEVAND D, ZERBI F, CABRAL A et al. ESPRESSO: the ultimate rocky exoplanets hunter for the VLT[C], 8446, 609-623(2012).
[109] LIU X, BRUCH A, LU J et al. Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide[J]. Nature Communications, 10, 2971(2019).
[110] METCALF A, FREDRICK C, TERRIEN R et al. 30 GHz electro-optic frequency comb spanning 300 THz in the near infrared and visible[J]. Optics Letters, 44, 2673-2676(2019).
[111] OBRZUD E, BRASCH V, VOUMARD T et al. Visible blue-to-red 10GHz frequency comb via on-chip triple-sum-frequency generation[J]. Optics Letters, 44, 5290-5293(2019).
[112] LEE S, OH D, YANG Q et al. Towards visible soliton microcomb generation[J]. Nature Communications, 8, 1295(2017).
[113] ZHAO Y, JI X, KIM B et al. Near-visible microresonator-based soliton combs[C](2019).
[114] XUE X, XUAN Y, LIU Y et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).
[115] DORN R, BRISTOW P, SMOKER J et al. CRIRES+ on sky: high spectral resolution at infrared wavelength enabling better science at the ESO VLT[C], 12184, 478-497(2022).
[116] MARCONI A, PRIETO C, PAMADO et al. ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study[C], 10702, 619-634(2018).
Get Citation
Copy Citation Text
Tongjun LIU, Huiqi YE, Liang TANG, Zhibo HAO, Jian HAN, Yang ZHAI, Dong XIAO. Research Advance in Astronomical High-precision Wavelength Calibration Technology(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 0552203
Category: Special Issue for Advanced Science and Technology of Astronomical Optics
Received: Jan. 1, 2023
Accepted: Mar. 14, 2023
Published Online: Jul. 19, 2023
The Author Email: Dong XIAO (dxiao@niaot.ac.cn)