Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610006(2023)

Lightweight Network Based on Multiregion Fusion for Facial Expression Recognition

Hong Tang1,2, Junling Xiang1,2、*, Haitao Chen3, Lü Rongcheng1, and Zehao Xia3
Author Affiliations
  • 1College of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Chongqing Key Laboratory of Mobile Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 3International College, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    Figures & Tables(11)
    Multi-area fusion network
    VGG-BN-16 network structure
    Key point mask generation map. (a) 68 key points; (b) 31 key points; (c) mask map
    Key points and mask generation under occlusion.(a) Key points; (b) mask map
    Overall framework of the model
    Accuracy under different confidence thresholds
    • Table 1. Performance comparison of different FER methods

      View table

      Table 1. Performance comparison of different FER methods

      Method

      Accuracy in

      RAF-DB /%

      Accuracy in

      AffectNet /%

      ResNet-502582.8354.37
      VGG-162680.9651.11
      pACNN1183.0555.33
      gACNN1185.0758.78
      E2-CapsNet2785.24
      APM2885.17
      DLP-CNN2984.1354.47
      Wgan3083.49
      IPFR3157.40
      SPA-SE3258.14
      SPWFA-SE3259.23
      Proposed method85.3958.81
    • Table 2. Facial expression recognition confusion matrix on RAF-DB dataset

      View table

      Table 2. Facial expression recognition confusion matrix on RAF-DB dataset

      ExpressionAngryDisgustFearHappySadnessSurpriseNeutral
      Angry0.810.020.040.030.030.040.03
      Disgust0.060.590.020.080.090.030.11
      Fear0.020.040.570.030.140.150.05
      Happy0.000.010.000.920.020.010.04
      Sadness0.030.060.010.030.820.000.05
      Surprise0.040.010.010.020.010.850.06
      Neutral0.010.010.010.040.090.020.82
    • Table 3. Facial expression recognition confusion matrix on AffectNet dataset

      View table

      Table 3. Facial expression recognition confusion matrix on AffectNet dataset

      ExpressionAngryDisgustFearHappySadnessSurpriseNeutral
      Angry0.360.240.020.130.070.030.15
      Disgust0.060.570.030.040.030.020.25
      Fear0.010.050.490.050.100.200.10
      Happy0.020.020.000.900.030.010.03
      Sadness0.030.060.020.040.560.020.27
      Surprise0.020.050.030.230.030.430.21
      Neutral0.010.040.020.130.040.050.71
    • Table 4. Ablation experimental results on RAF-DB dataset

      View table

      Table 4. Ablation experimental results on RAF-DB dataset

      MethodAccuracy /%Dataset
      Local detail branch42.17RAF-DB
      Global branch78.26
      Global branch+attention map80.53
      Proposed method(VGG-16)84.59
      Proposed method85.39
    • Table 5. Pruned results of two methods

      View table

      Table 5. Pruned results of two methods

      MethodTrim percentageAccuracy /%Parameters /106Pruned(parameter)/%Flops /109Pruned(floating-point)/%
      Proposed method085.3931.0016.95
      40%84.7813.7755.5811.6431.33
      50%84.1911.4862.979.9141.53
      60%82.438.2673.358.1152.15
      VGGNet080.9620.4814.26
      40%75.3110.6947.809.7531.62
      50%52.928.7957.088.6639.27
      60%49.255.2874.227.5946.77
    Tools

    Get Citation

    Copy Citation Text

    Hong Tang, Junling Xiang, Haitao Chen, Lü Rongcheng, Zehao Xia. Lightweight Network Based on Multiregion Fusion for Facial Expression Recognition[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 13, 2021

    Accepted: Jan. 17, 2022

    Published Online: Mar. 16, 2023

    The Author Email: Junling Xiang (390098758@qq.com)

    DOI:10.3788/LOP213204

    Topics