Journal of Inorganic Materials, Volume. 38, Issue 3, 243(2023)
Compared with the first and second generation semiconductor materials, the third generation semiconductor materials exhibit higher breakdown field strength, higher saturated electron drift velocity, outstanding thermal conductivity, and wider band gap, suitable for manufacturing of electronic devices with high frequency, high power, radiation resistance, corrosion resistant properties, optoelectronic devices and light emitting devices. As one of the representatives of the third generation of semiconductor materials, gallium nitride (GaN) is an ideal substrate material for preparing blue-green laser, radio frequency (RF) microwave and power electronic devices. It has broad application prospects in laser display, 5G communication, phased array radar, aerospace, etc. Hydride vapor phase epitaxy (HVPE) method is the most promising method for growth of GaN crystals due to its simple growth equipment, mild growth conditions and fast growth rate. Due to the widely used quartz reactors, unintentionally doped GaN obtained by HVPE method inevitably has donor impurities (Si and O). Therefore, the grown GaN shows n-type electrical properties, high carrier concentration and low conductivity, which limits its application in high-frequency and high-power devices. Currently, doping is the most common method to improve the electrical performance of semiconductor materials, through which different types of GaN single crystal substrates can be obtained with different dopants to improve their electrochemical characteristics and meet the different needs of market applications. In this article, the basic structure and properties of GaN semiconductor crystal material are introduced, and the recent progress of the high quality GaN crystals grown by HVPE method is reviewed; and the doping characteristics, dopant types, growth process and the influence of doped atoms on the electrical properties of GaN are introduced. Finally, the challenges and opportunities faced by the HVPE method to grow doped GaN crystals are briefly described, and the future developments in several directions are prospected.
Get Citation
Copy Citation Text
Zhanguo QI, Lei LIU, Shouzhi WANG, Guogong WANG, Jiaoxian YU, Zhongxin WANG, Xiulan DUAN, Xiangang XU, Lei ZHANG.
Category:
Received: Oct. 17, 2022
Accepted: --
Published Online: Oct. 16, 2023
The Author Email: WANG Shouzhi (wangsz@sdu.edu.cn), ZHANG Lei (leizhang528@sdu.edu.cn)