Acta Optica Sinica, Volume. 37, Issue 10, 1015002(2017)

Convolutional Neural Network Based Multi-Band Ship Target Recognition with Feature Fusion

Feng Liu1、*, Tongsheng Shen2, and Xinxing Ma1
Author Affiliations
  • 1 Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai, Shandong 264001, China
  • 2 China Defense Science and Technology Information Center, Beijing 100142, China
  • show less
    References(22)

    [1] Zhang Difei, Zhang Jinsuo, Yao Keming et al. Infrared ship-target recognition based on SVM classification[J]. Infrared and Laser Engineering, 45, 0104004(2016).

    [2] Ramanan D, Zhu X. Face detection, pose estimation, and landmark localization in the wild[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2879-2886(2012).

    [4] Feineigle P A, Morris D D, Snyder F D. Ship recognition using optical imagery for harbor surveillance[C]. Proceedings of AUVSI Unmanned Systems North America Conference, 249-263(2007).

    [6] Smeelen M A. Schwering P B W, Toet A, et al. Semi-hidden target recognition in gated viewer images fused with thermal IR images[J]. Information Fusion, 18, 131-147(2014).

    [7] Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 40, 1229-1251(2017).

    [8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems, 1097-1105(2012).

    [9] Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 36, 0428001(2016).

    [10] He K, Zhang X, Ren S et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).

    [11] Ren S, He K, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]. Advances in Neural Information Processing Systems, 91-99(2015).

    [12] Redmon J, Divvala S, Girshick R, real-time object detection[J/OL] et al. -05-09)[2017-01-05] https:∥arxiv, org/abs/1506, 02640(2016).

    [13] Kuen J, Wang Z, Wang G. Recurrent attentional networks for saliency detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 3668-3677(2016).

    [14] Bousetouane F, Morris B. Fast CNN surveillance pipeline for fine-grained vessel classification and detection in maritime scenarios[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, 242-248(2016).

    [15] Zhang M M, Choi J, Daniilidis K et al. VAIS: a dataset for recognizing maritime imagery in the visible and infrared spectrums[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 10-16(2015).

    [16] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]. Proceedings of the 27 th International Conference on Machine Learning, 807-814(2010).

    [17] Zhang Y, Wu J, Cai J. Compact representation for image classification: to choose or to compress?[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 907-914(2014).

    [18] Ye P, Kumar J, Doermann D. Beyond human opinion scores: blind image quality assessment based on synthetic scores[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4241-4248(2014).

    CLP Journals

    [1] Haiyang Xu, Jun Kong, Min Jiang, Baofeng Zan. Action Recognition Based on Histogram of Spatio-Temporal Oriented Principal Components[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061009

    [2] Cao Yujian, Xu Guoming, Shi Guochuan. Low Altitude Armored Target Detection Based on Rotation Invariant Faster R-CNN[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101501

    [3] Liu Kun, Su Tong, Wang Dian. Remote Sensing Aircraft Recognition Based on Blur-Invariant Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82001

    [4] Wenxiu Wang, Yutian Fu, Feng Dong, Feng Li. Infrared Ship Target Detection Method Based on Deep Convolution Neural Network[J]. Acta Optica Sinica, 2018, 38(7): 0712006

    Tools

    Get Citation

    Copy Citation Text

    Feng Liu, Tongsheng Shen, Xinxing Ma. Convolutional Neural Network Based Multi-Band Ship Target Recognition with Feature Fusion[J]. Acta Optica Sinica, 2017, 37(10): 1015002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 10, 2017

    Accepted: --

    Published Online: Sep. 7, 2018

    The Author Email: Feng Liu (liufeng_cv@126.com)

    DOI:10.3788/AOS201737.1015002

    Topics