Laser & Optoelectronics Progress, Volume. 60, Issue 20, 2015006(2023)

Structured Light Three-Dimensional Reconstruction Technology Based on MultiResHNet

Liting Yang*, Xiaoliang Liu, Xiuxiang Chu, and Lu Zhou
Author Affiliations
  • School of Optical Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang , China
  • show less
    References(20)

    [1] Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation[J]. Sensors, 9, 568-601(2009).

    [2] Vázquez-Arellano M, Griepentrog H W, Reiser D et al. 3-D imaging systems for agricultural applications-a review[J]. Sensors, 16, 618(2016).

    [3] Curless B. From the range scans to 3D models[J]. ACM Siggraph Computer Graphics, 33, 38-41(1999).

    [4] Song Z. High-speed 3D shape measurement with structured light methods: a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018).

    [5] Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 61, 85-117(2015).

    [6] Feng S J, Zuo C, Yin W et al. The application of deep-learning technology to fringe projection 3D imaging[J]. infra-red and Laser Engineering, 49, 0303018(2020).

    [7] Spoorthi G E, Gorthi S, Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 26, 54-58(2019).

    [8] Spoorthi G E, Gorthi R K S, Gorthi S. PhaseNet 2.0: phase unwrapping of noisy data based on the deep learning approach[J]. IEEE Transactions on Image Processing, 29, 4862-4872(2020).

    [9] Wang K Q, Li Y, Qian K M et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019).

    [10] Nguyen H, Wang Y Z, Wang Z Y. Single-shot 3D shape reconstruction using structured light and deep convolutional neural networks[J]. Sensors, 20, 3718(2020).

    [11] Machineni R C, Spoorthi G E, Vengala K S et al. End-to-end deep learning-based fringe projection framework for 3D profiling of objects[J]. Computer Vision and Image Understanding, 199, 103023(2020).

    [12] van der Jeught S, Dirckx J J. Deep neural networks for single- shot structured light profilometry[J]. Optics Express, 27, 17091-17101(2019).

    [13] Ibtehaz N, Rahman M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 121, 74-87(2020).

    [14] Nguyen H, Ly K L, Tran T et al. hNet: single-shot 3D shape reconstruction using structured light and h-shaped global guidance network[J]. Results in Optics, 4, 100104(2021).

    [15] Zhang Z H. A review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering, 50, 1097-1106(2012).

    [16] Zhang Q C, Su X, Xiang L et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 50, 574-579(2012).

    [17] Yu S, Zhang J, Yu X et al. 3D measurement using a combined Gray code and dual-frequency phase-shifting approach[J]. Optics Communications, 413, 283-290(2018).

    [18] Xie S N, Tu Z W. Holistically-nested edge detection[C], 1395-1403(2015).

    [19] Goodfellow I, Bengio Y, Courville A[M]. Deep learning(2016).

    Tools

    Get Citation

    Copy Citation Text

    Liting Yang, Xiaoliang Liu, Xiuxiang Chu, Lu Zhou. Structured Light Three-Dimensional Reconstruction Technology Based on MultiResHNet[J]. Laser & Optoelectronics Progress, 2023, 60(20): 2015006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 29, 2022

    Accepted: Dec. 22, 2022

    Published Online: Sep. 28, 2023

    The Author Email: Liting Yang (542655072@qq.com)

    DOI:10.3788/LOP223203

    Topics