Optics and Precision Engineering, Volume. 33, Issue 6, 945(2025)

Cross-modality image matching algorithm based on policy gradient and pseudo-twin network

Jian ZHANG1,2,3, Ao LIANG1,2,3, Haiyang HUA1,2、*, Tianci LIU1,2, and Shihan LI1,2,3
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Information Processing,Chinese Academy of Sciences, Shenyang006, China
  • 2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang110016, China
  • 3University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    References(36)

    [1] SHENGJUN X, HUA Y, MINGHAI L et al. Low-light image enhancement based on dual-frequency domain feature aggregation[J]. Opto-Electronic Engineering, 50, 230225-17(2024).

         徐胜军, 杨华, 李明海. 基于双频域特征聚合的低照度图像增强[J]. 光电工程, 50, 32-49(2023).

    [2] LI J, SHENG Y H, ZHANG K et al. Image matching of variable circular domain compass features[J]. Optics and Precision Engineering, 22, 1339(2014).

         李佳, 盛业华, 张卡. 变圆域罗盘特征图像匹配[J]. 光学 精密工程, 22, 1339(2014).

    [3] EMERY W J, BALDWIN D, MATTHEWS D. Maximum cross correlation automatic satellite image navigation and attitude corrections for open-ocean image navigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 33-42(2003).

    [4] MA J Y, JIANG X Y, FAN A X et al. Image matching from handcrafted to deep features: a survey[J]. International Journal of Computer Vision, 129, 23-79(2021).

    [5] LOWE D G. Object Recognition from Local Scale-Invariant Features[C]. Greece, 1150-1157(1999).

    [6] HAO S, WU Y Q, MA X et al. Visible and infrared image matching based on CycleGAN-SIFT[J]. Opt. Precision Eng., 30, 602-614(2022).

         郝帅, 吴瑛琦, 马旭. 基于CycleGAN-SIFT的可见光和红外图像匹配[J]. 光学 精密工程, 30, 602-614(2022).

    [7] CUI S, MA A L, WAN Y T et al. Cross-modality image matching network with modality-invariant feature representation for airborne-ground thermal infrared and visible datasets[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5606414(2021).

    [8] 凌志刚, 梁彦, 程咏梅. 一种稳健的多源遥感图像特征配准方法[J]. 电子学报, 38, 2892-2897(2010).

         LING Z G, LIANG Y, CHENG Y M et al. A robust multi-source remote-sensing image registration method based on feature matching[J]. Acta Electronica Sinica, 38, 2892-2897(2010).

    [9] YE Y X, SHAN J, HAO S Y et al. A local phase based invariant feature for remote sensing image matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 205-221(2018).

    [10] JOHNSON K, COLE-RHODES A, ZAVORIN I et al. Mutual information as a similarity measure for remote sensing image registration[C](2001).

    [11] 陈敏, 朱庆, 朱军. 多光谱遥感影像亮度空间相位一致性特征点检测[J]. 测绘学报, 45, 178-185(2016).

         CHEN M, ZHU Q, ZHU J et al. Interest point detection for multispectral remote sensing image using phase congruency in illumination space[J]. Acta Geodaetica et Cartographica Sinica, 45, 178-185(2016).

    [12] 叶沅鑫, 单杰, 彭剑威. 利用局部自相似进行多光谱遥感图像自动配准[J]. 测绘学报, 43, 268-275(2014).

         YE Y X, SHAN J, PENG J W et al. Automated multispectral remote sensing image registration using local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 43, 268-275(2014).

    [13] 蓝朝桢, 卢万杰, 于君明. 异源遥感影像特征匹配的深度学习算法[J]. 测绘学报, 50, 189-202(2021).

         LAN C Z, LU W J, YU J M et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 50, 189-202(2021).

    [14] 眭海刚, 刘畅, 干哲. 多模态遥感图像匹配方法综述[J]. 测绘学报, 51, 1848-1861(2022).

         SUI H G, LIU C, GAN Z et al. Overview of multi-modal remote sensing image matching methods[J]. Acta Geodaetica et Cartographica Sinica, 51, 1848-1861(2022).

    [15] WU Wei, XIAN Y, SU J et al. A matching method based on improved SuperPoint and linear Transformer for optical and infrared images[J]. Journal of Beijing University of Aeronautics and Astronautics.

         伍薇, 鲜勇, 苏娟. 基于改进SuperPoint与线性转换器的可见光红外匹配算法[J]. 北京航空航天大学学报.

    [16] LI Yongping, YANG Yanchun, DANG Jianwu, WANG Yangping等. Infrared and Visible Image Fusion Based on Transform Domain VGGNet19[J]. Infrared Technology, 44, 1293-1300(2022).

         李永萍, 杨艳春, 党建武. 基于变换域VGGNet19的红外与可见光图像融合[J]. 红外技术, 44, 1293-1300(2022).

    [17] RONNEBERGER O, FISCHER P, BROX T[M]. U-Net: Convolutional Networks for Biomedical Image Segmentation, 234-241(2015).

    [18] POTJE G, CADAR F, ARAUJO A et al. Enhancing deformable local features by jointly learning to detect and describe keypoints[C], 1306-1315(2023).

    [19] HAN X F, LEUNG T, JIA Y Q et al. MatchNet: unifying feature and metric learning for patch-based matching[C], 3279-3286(2015).

    [20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [21] WANG Q L, WU B G, ZHU P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [22] PARK J, LEE J Y et al. CBAM: Convolutional block attention module[C], 3-19(2018).

    [23] LI J Y, HU Q W, AI M Y. RIFT: multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing(2019).

    [24] DUSMANU M, ROCCO I, PAJDLA T et al. D2-net: a trainable cnn for joint description and detection of local features[C], 8084-8093(2019).

    [25] RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery: a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 34, 187-203(2016).

    [26] LIU Y X, LIU Y, YAN S et al. A multi-view thermal-visible image dataset for cross-spectral matching[J]. Remote Sensing, 15, 174(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jian ZHANG, Ao LIANG, Haiyang HUA, Tianci LIU, Shihan LI. Cross-modality image matching algorithm based on policy gradient and pseudo-twin network[J]. Optics and Precision Engineering, 2025, 33(6): 945

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 11, 2024

    Accepted: --

    Published Online: Jun. 16, 2025

    The Author Email: Haiyang HUA (c3ill@sia. cn)

    DOI:10.37188/OPE.20253306.0945

    Topics