Acta Laser Biology Sinica, Volume. 32, Issue 4, 297(2023)
Research Progress on Au NPs/UCNPs Composite Nanosystem in Fluorescence Imaging Guided Photothermal Tumor Therapy
[1] [1] JONES K E, PATEL N G, LEVY M A, et al. Global trends in emerging infectious diseases[J] . Nature, 2008, 451(7181): 990-993.
[2] [2] KIM S H, KANG E B, JEONG C J, et al. Light controllable surface coating for effective photothermal killing of bacteria[J] . ACS Applied Materials & Interfaces, 2015, 7(28): 15600-15606.
[3] [3] SINGHAL S, NIE S, WANG M D, et al. Nanotechnology applica-tions in surgical oncology[J] . Annual Review of Medicine, 2010, 61(1): 359-373.
[4] [4] HERBST R S, MORGENSZTERN D, BOSHOFF C, et al. The bi-ology and management of non-small cell lung cancer[J] . Nature, 2018, 553(7689): 446-454.
[5] [5] KOTHARI G, KORTE J, LEHRER E J, et al. A systematic review and meta-analysis of the prognostic value of radiomics based mod-els in non-small cell lung cancer treated with curative radiotherapy[J] . Radiotherapy and Oncology, 2021, 155(16): 188-203.
[6] [6] HIRSCH L R, STAFFORD R J, BANKSON J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J] . The Proceedings of the National Academy of Sciences, 2003, 100(23): 13549-13554.
[7] [7] ROBINSON J T, TABAKMAN S M, LIANG Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J] . Journal of the American Chemical Soci-ety, 2011, 133(17): 6825-6831.
[9] [9] ZHU X J, FENG W, CHANG J, et al. Temperature-feedback up-conversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nature Communications, 2016, 7(10437): 1-10.
[10] [10] XU M, XUE B, WANG Y, et al. Temperature-feedback nanoplat-form for NIR-II penta-modal imaging-guided synergistic photo-thermal therapy and CAR-NK immunotherapy of lung cancer[J]. Small, 2021, 17(43): 1-8.
[11] [11] WANG Y H, SONG S Y, ZHANG S T, et al. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges[J]. Nano Today, 2019, 25: 38-67.
[12] [12] LIU Q, SUN Y, YANG T, et al. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimag-ing in vivo[J]. American Chemical Society, 2011, 133(43): 17122-17125.
[13] [13] HONG E, LIU L, BAI L, et al. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment[J]. Materials Science & Engineering C, 2019, 105(22): 1-22.
[14] [14] RAFIQUE R, KAILASA S K, PARK T J, et al. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications[J]. Trends in Analytical Chemistry, 2019, 120: 115646.
[15] [15] ZHANG Z, CHEN Y, ZHANG Y. Self-assembly of upconversion nanoparticles based materials and their emerging applications[J]. Small, 2022, 18(9): e2103241.
[16] [16] ZENG Y, ZHANG D, WU M, et al. Lipid-Au NPs@PDA nanohy-brid for MRI/CT imaging and photothermal therapy of hepatocel-lular carcinoma[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14266-14277.
[17] [17] SONGLZ, ZHAONN, XUFJ, et al. Hydroxyl-rich polycation brushed multifunctional rare-earth-gold core-shell nanorods for versatile therapy platforms[J]. Advanced Functional Materials, 2017, 27(32): 1701255.
[18] [18] YE J M, WEN Q, WUY, et al. Plasmonic anisotropic gold nano-rods: preparation and biomedical applications[J]. Nano Research, 2022, 15(7): 6372-6398.
[19] [19] WANG R, ZHAO N, XU F J, et al. Hollow nanostars with pho-tothermal gold caps and their controlled surface functionalization for complementary therapies[J]. Advanced Functional Materials, 2017, 27(23): 1700256.
[20] [20] LI D, LIU Q, QI Q, et al. Gold nanoclusters for NIR-II fluores-cence imaging of bones[J]. Small, 2020, 16(43): 2003851.
[21] [21] SUN X, SUN J, DONG B, et al. Noninvasive temperature monitor-ing for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites[J]. Biomaterials, 2019, 201: 42-52.
[22] [22] HU S, LIU B J, FENG J M, et al. Quantifying surface tempera-ture of thermoplasmonic nanostructures[J]. Journal of American Chemical Society, 2018, 140(42): 13680-13686.
[23] [23] WANG X X, WANG S S, ZHANG S P, et al. Plasmon-directed polymerization: regulating polymer growth with light[J]. Nano Research, 2018, 11(12): 6384-6390.
[24] [24] LEE J, GOVOROV A O, KOTOV N A, et al. Nanoparticle as-semblies with molecular springs: a nanoscale thermometer[J]. Angewandte Chemie International Edition, 2005, 44(45): 7439-7442.
[25] [25] LINY, SHAY, YANYC, et al. Upconversion nanoparticle@Au core-satellite assemblies for in situ amplified imaging of micro RNA in living cells and combined cancer phototherapy[J]. Ana-lytical Chemistry, 2022, 94(19): 7075-7083.
[26] [26] YU S, JANG D, YUAN H, HUANG W, et al. Plasmon-triggered upconversion emissions and hot carrier injection for combinatorial photothermal and photodynamic cancer therapy[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58422-58433.
[27] [27] ANSARI A A, PARCHUR A K, THORAT N D, et al. New advanc-es in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine[J]. Coordination Chemistry Reviews, 2021, 440(2021): 213971.
[28] [28] FRANCOIS A. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 2004, 104(1): 139-173.
[29] [29] WANG Y, SONG S, ZHANG S, et al. Stimuli-responsive nano-theranostics based on lanthanide-doped upconversion nanopar-ticles for cancer imaging and therapy: current advances and future challenges[J]. Nano Today, 2019, 25: 38-67.
[30] [30] ZHOU J, LIU Z, LI F, et al. Upconversion nanophosphors for small-animal imaging[J]. Chemical Society Reviews, 2012, 41(3): 1323-1349.
[31] [31] YANG Y, HUANG J, WEI W, et al. Switching the NIR upconver-sion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy[J]. Nature Communications, 2022, 13(1): 3149.
[32] [32] HLAVACEK A, FARKA Z, MICKERT M J, et al. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detec-tion and imaging[J]. Nature Protocols Erecipes for Researchers, 2022, 17(4): 1028-1072.
[33] [33] CHENG L, YANG K, LI Y, et al. Facile preparation of multifunc-tional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angewandte Chemie Interna-tional Edition, 2011, 50(32): 7385-7390.
[34] [34] CHENG L, YANG K, LI Y, et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and mag-netically targeted photothermal therapy[J]. Biomaterials, 2012, 33(7): 2215-2222.
[35] [35] HUANG Y, ROSEI F, VETRONE F, et al. A single multifunctional nanoplatform based on upconversion luminescence and gold nano-rods[J]. Nanoscale, 2015, 7(12): 5178-5185.
[36] [36] CHEN C W, LEE P H, CHAN Y C, et al. Plasmon-induced hyper-thermia: hybrid upconversion NaYF4:Yb/Er and gold nanomateri-als for oral cancer photothermal therapy[J]. Journal of Materi-als Chemistry B, 2015, 3(42): 8293-8302.
[37] [37] SUN M, XU L, MAW, et al. Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy[J]. Advanced Materi-als, 2016, 28(5): 898-904.
[38] [38] ZHONG Y, ZHANG X, YANG L, et al. Hierarchical dual-respon-sive cleavable nanosystem for synergetic photodynamic/photother-mal therapy against melanoma[J]. Materials Science & Engineer-ing C, 2021, 131: 112524.1-112524.15.
[39] [39] WANGC, XUL, XUJ, et al. Multimodal imaging and photother-mal therapy were simultaneously achieved in the core-shell UCNR structure by using single near-infrared light[J]. Dalton Transac-tions, 2017, 46(36): 12147-12157.
[40] [40] LYU R,YANG PP, HE F, et al. An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/ temperature-responsive drug release[J]. Biomaterials, 2015, 63: 115-127.
[41] [41] HEF, YANGGX, YANGPP, et al. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform[J]. Advanced Functional Materials, 2015, 25(25): 3966-3976.
[42] [42] HE F, FENG LL,YANG PP, et al. Enhanced up/down-conversion luminescence and heat: simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy[J].
[43] [43] DOU J, CHEN B, LIU G, et al. Decorating rare-earth fluoride upconversion nanoparticles on Au NRs@Ag core-shell structure for NIR light-mediated photothermal therapy and bioimaging[J] . Journal of Rare Earths, 2022, 40(2): 193-200.
[44] [44] SUO H, ZHAO X, ZHANG Z, et al. Rational design of ratiomet-ric luminescence thermometry based on thermally coupled levels for bioapplications[J] . Laser Photonics Reviews, 2020, 15(1): 2000319.1-2000319.15.
[45] [45] LIANG Y, LIU Y, LEI P, et al. Tumor microenvironment-respon-sive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy[J] . Nano Research, 2023, 16(7): 9826-9834.
[46] [46] LIU G, WANG Z, SUN W, et al. Robust emission in near-infrared II of lanthanide nanoprobes conjugated with Au (LNPs-34(1): 153-158. ZHOU Xun, MA Qiong, LIU Zhibo, et al. 1 064 nm laser induced thermal injure in mice skin with different laser duration[J] . High Power Laser and Particle Beams, 2022, 34(1): 153-158.
[47] [47] LIU H, ZHANG J, JIA Y, et al. Theranostic nanomotors for tumor multimode imaging and photothermal/photodynamic synergis-tic therapy[J] . Chemical Engineering Journal, 2022, 442(1): 135994.1-135994.12.
[48] [48] WANG S, LIU L, FAN Y, et al. In vivo high-resolution ratio-metric fluorescence imaging of inflammation using NIR-II nano-probes with 1 550 nm emission[J] . Nano Letters, 2019, 19(4): 2418-2427.
[49] [49] LIANG Y, RAN A, DU P Y, et al. NIR-activated upconversion nanoparticles/hydrogen-bonded organic framework nanocompos-ites for NIR-II imaging-guided cancer therapy[J] . Nano Today 2023, 48: 101751.1-101751.11.
Get Citation
Copy Citation Text
HAIREGU Tuxun, HUANG Gaofei, ZHANG Chi, ZHAO Huiyu, FAN Huimin, NUERNISHA Alifu. Research Progress on Au NPs/UCNPs Composite Nanosystem in Fluorescence Imaging Guided Photothermal Tumor Therapy[J]. Acta Laser Biology Sinica, 2023, 32(4): 297
Received: May. 5, 2023
Accepted: --
Published Online: Jan. 26, 2024
The Author Email: