Opto-Electronic Engineering, Volume. 51, Issue 7, 240126(2024)

Global pooling residual classification network guided by local attention

Wentao Jiang1, Rui Dong1、*, and Shengchong Zhang2
Author Affiliations
  • 1College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
  • show less
    Figures & Tables(25)
    Pooling residual structure
    MSLE structure diagram
    Schematic diagram before and after segmentation
    Feature extraction structure diagram
    Nearest neighbor interpolation upsampling operation image
    Guided feature information diagram
    Visualization diagram of the MSLE process
    Three module structures. (a) Block; (b) M-block; (c) MP-block
    Overall structure of MSLENet
    Structure diagrams of three types of network. (a) ResNet34-c; (b) M-MSLENet; (c) MP-MSLENet
    Three type of network iteration accuracies under three datasets.(a) CIFAR-10; (b) CIFAR-100; (c) SVHN
    Three type of network iteration loss under three datasets. (a) CIFAR-10; (b) CIFAR-100; (c) SVHN
    Accuracy of five modules at different iterations. (a) CIFAR-100;(b) STL-10; (c) Imagenette; (d) NWPU-RESISC45
    Channel visualizations under different modules. (a) CA; (b) ECA; (c) GCT; (d) SE; (e) M-APC
    • Table 1. Dataset

      View table
      View in Article

      Table 1. Dataset

      名称图像尺寸分类数训练集数量测试集数量
      CIFAR-1032×32105000010000
      CIFAR-10032×321005000010000
      SVHN32×32107325726032
      GTSRB32×32433920912630
      STL-1096×961050008000
      Imagenette320×3201070003000
      NWPU-RESISC45256×25645270004500
    • Table 2. Accuracy of three networks under three datasets

      View table
      View in Article

      Table 2. Accuracy of three networks under three datasets

      网络CIFAR-10/%CIFAR-100/%SVHN/%
      ResNet-c95.3878.0296.63
      M-MSLENet95.7879.3396.89
      MP-MSLENet96.0280.4296.94%
    • Table 3. Comparison of parameters for four modules

      View table
      View in Article

      Table 3. Comparison of parameters for four modules

      网络准确率/%F1-scoreXentropy
      MSLENet1879.140.79160.012
      MSLENet3480.420.80650.008
      MSLENet5078.660.78830.010
      MSLENet10179.650.79650.008
    • Table 4. Comparison of parameters for five modules on CIFAR-100

      View table
      View in Article

      Table 4. Comparison of parameters for five modules on CIFAR-100

      网络准确率/%F1-scoreXentropy
      +CA78.550.78810.010
      +ECA79.330.79490.011
      +GCT77.080.78100.012
      +SE79.250.79320.010
      +MSLE80.370.80540.009
    • Table 5. Comparison of parameters for five modules on STL-10

      View table
      View in Article

      Table 5. Comparison of parameters for five modules on STL-10

      网络准确率/%F1-scoreXentropy
      +CA72.250.72280.005
      +ECA72.400.72410.006
      +GCT69.260.69310.008
      +SE70.320.70400.007
      +MSLE72.780.72820.003
    • Table 6. Comparison of parameters for five modules on Imagenette

      View table
      View in Article

      Table 6. Comparison of parameters for five modules on Imagenette

      网络准确率/%F1-scoreXentropy
      +CA89.140.89240.003
      +ECA88.870.89030.004
      +GCT87.340.87450.002
      +SE89.070.89070.003
      +MSLE89.700.89910.002
    • Table 7. Comparison of parameters for five modules on NWPU-RESISC45

      View table
      View in Article

      Table 7. Comparison of parameters for five modules on NWPU-RESISC45

      网络准确率/%F1-scoreXentropy
      +CA93.000.93020.012
      +ECA95.330.95330.003
      +GCT94.200.94210.007
      +SE95.130.95130.003
      +MSLE95.400.95400.004
    • Table 8. Setting values of hyperparameters during training process

      View table
      View in Article

      Table 8. Setting values of hyperparameters during training process

      超参数设定值
      Input size32×32
      RandomCrop4
      RandomHorizontalFlip0.5
      RandomErasing0.2
      epochs300
      优化器SGD
      lr0.1
      lr decay0.2
      batch size128
      Momentum0.9
      Weight decay5e-4
      Mixup0.2
      EMA0.9
      Label Smoothing0.1
      k[4,2,0,0]
      l16
    • Table 9. Classification accuracy of each network under three datasets

      View table
      View in Article

      Table 9. Classification accuracy of each network under three datasets

      网络CIFAR-10/%CIFAR-100/%SVHN/%
      VGG-1691.7967.84-
      SENet95.2273.2287.06
      DenseNet-12194.5577.0195.83
      CAPR-DenseNet94.2478.8494.95
      MobileNetV293.3768.08-
      ShuffleNet89.4070.06-
      ResNet3487.8969.4191.51
      Multi-ResNet94.6578.68-
      EfficientNet94.0175.9693.32
      SSE-GAN85.14-92.92
      Couplformer93.5473.9294.26
      ResNet50+SPAM-80.53-
      FAVOR+91.4272.5693.21
      ResNet-CE94.2776.15-
      MMA-CCT-7/3×294.7477.594.26
      CaiT94.9179.89--
      Swin-T94.4678.07--
      MSLENet96.9382.2897.22
    • Table 10. FLOPs and params of various networks

      View table
      View in Article

      Table 10. FLOPs and params of various networks

      网络Params/MFLOPs/G
      Wide-ResNet37.165.96
      ConvNext27.801.45
      EfficientNet52.981.49
      Swim-T86.784.25
      Multi-ResNet51.233.13
      MSLENet22.351.20
    • Table 11. Experimental results of various networks

      View table
      View in Article

      Table 11. Experimental results of various networks

      网络CIFAR-10/%CIFAR-100/%GTSRB/%NWPU-RESISC45/%
      Net_2_2_0_096.8179.6597.2695.17
      Net_4_2_0_096.9382.2897.3995.40
      Net_4_2_2_096.8082.2397.1395.44
      Net_8_4_2_096.9082.5197.2795.15
    Tools

    Get Citation

    Copy Citation Text

    Wentao Jiang, Rui Dong, Shengchong Zhang. Global pooling residual classification network guided by local attention[J]. Opto-Electronic Engineering, 2024, 51(7): 240126

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: May. 28, 2024

    Accepted: Aug. 5, 2024

    Published Online: Nov. 12, 2024

    The Author Email: Rui Dong (董睿)

    DOI:10.12086/oee.2024.240126

    Topics