Computer Applications and Software, Volume. 42, Issue 4, 135(2025)
LIGHTWEIGHT OBJECT DETECTION ALGORITHM BASED ON IMPROVED CENTERNET
[1] [1] Chen H, Sun K Y, Tian Z, et al. BlendMask: Top-down meets bottom-up for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8573-8581.
[2] [2] Wang J D, Sun K, Cheng T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[3] [3] Voigtlaender P, Luiten J, Torr P H, et al. Siam R-CNN: Visual tracking by re-detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6578-6588.
[4] [4] Carreira J, Zisserman A. Quo Vadis, action recognition? a new model and the kinetics dataset[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6299-6308.
[5] [5] Wang D Q, Devin C, Cai Q Z, et al. Deep object-centric policies for autonomous driving[C]//International Conference on Robotics and Automation, 2019: 8853-8859.
[6] [6] Antol S, Agrawal A, Lu J, et al. VQA: Visual question answering[C]//IEEE International Conference on Computer Vision, 2015: 2425-2433.
[7] [7] Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, 2015: 1440-1448.
[8] [8] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[9] [9] Redmon J, Divvala S, Girshick R, et al. You only look once: Unifified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[10] [10] Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot multibox Detector[C]//European Conference on Computer Vision, 2016: 21-37.
[11] [11] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[12] [12] Hosang J, Benenson R, Schiele B. Learning non-maximum suppression[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6469-6477.
[13] [13] Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]//European Conference on Computer Vision, 2018: 734-750.
[14] [14] Zhou X Y, Zhuo J C, Krahenbuhl P. Bottom-up object detection by grouping extreme and center points[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2019: 850-859.
[15] [15] Zhou X Y, Wang D Q, Krhenbuhl P. Objects as points[EB]. arXiv: 1904.07850, 2019.
[16] [16] The PASCAL visual object classes challenge 2007[EB/OL]. [2021-10-12]. http://host.robots.ox.ac.uk/pascal/VOC/voc2007/.
[17] [17] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[18] [18] Zeiler M D, Krishnan D, Taylor G W, et al. Deconvolutional networks[C]//Computer Vision and Pattern Recognition, 2010: 2528-2535.
[19] [19] Zhu X Z, Hu H, Lin S, et al. Deformable convnets v2: More deformable, better results[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[20] [20] Chollet F. Xception: Deep learning with depth wise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
[21] [21] Howard A G, Zhu M L, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB]. arXiv: 1704.04861, 2017.
[22] [22] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB]. arXiv: 1602.07360, 2016.
[23] [23] Sandler M, Howard A, Zhu M L, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[24] [24] Xie S N, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
[25] [25] Wu B C, Dai X L, Zhang P Z, et al. FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10726-10734.
[26] [26] Cai H, Zhu L, Han S. ProxylessNAS: Direct neural architecture search on target task and hardware[EB]. arXiv: 1812.00332v2, 2019.
[27] [27] Tan M X, Chen B, Pang R M, et al. MnasNet: Platform-aware neural architecture search for mobile[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2815-2823.
[28] [28] Tan M X, Le Q V. MixConv: Mixed depthwise convolutional kernels[EB]. arXiv: 1907.09595, 2019.
[29] [29] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[30] [30] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2012: 3354-3361.
[31] [31] Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[EB]. arXiv: 1709.01507, 2017.
Get Citation
Copy Citation Text
Ni Yihua, Yan Shengye. LIGHTWEIGHT OBJECT DETECTION ALGORITHM BASED ON IMPROVED CENTERNET[J]. Computer Applications and Software, 2025, 42(4): 135
Category:
Received: Dec. 12, 2021
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: