Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 8, 1139(2023)

Mask wearing detection based on improved YOLOv7

Hui-chen FU1,2, Jun-wei GAO1,2、*, and Lu-yang CHE1,2
Author Affiliations
  • 1School of Automation, Qingdao University, Qingdao 266071, China
  • 2Shandong Key Laboratory of Industrial Control Technology, Qingdao 266071, China
  • show less
    Figures & Tables(10)
    YOLOv7 model structure
    Convolutional attention structure diagram
    Improved ConvNeXt structure diagram
    Diagram of improved space pyramid pool structure
    Example of dataset images
    Example of dataset images
    Comparison of Fast-RCNN, YOLOv7 and improved YOLOv7 detection results.
    • Table 1. Classification and number of targets in the data set

      View table
      View in Article

      Table 1. Classification and number of targets in the data set

      Defect typeTraining setValidation setTest setTotal
      No-mask3 1127787783 890
      Wearing correctly2 3525885882 940
      Wearing incorrectly1 9204804802 400
    • Table 2. Performance index of different improvement methods

      View table
      View in Article

      Table 2. Performance index of different improvement methods

      ModelCBAMConvNeXtSPPCSPCPPrecision/%mAP/%
      YOLOv790.290.2
      YOLOv7-A+93.490.9
      YOLOv7-B++92.991.9
      YOLOv7-C+++92.493.8
    • Table 3. Comparison of performance indicators of different detection algorithms

      View table
      View in Article

      Table 3. Comparison of performance indicators of different detection algorithms

      MethodNo-mask/%

      Wearing

      correctly/%

      Wearing incorrectly/%

      mAP/

      %

      Faster-Rcnn74.170.972.272.4
      YOLOv787.494.189.290.2
      YOLOv7-A92.195.784.890.9
      YOLOv7-B94.195.688.691.9
      YOLOv7-C94.296.290.993.8
    Tools

    Get Citation

    Copy Citation Text

    Hui-chen FU, Jun-wei GAO, Lu-yang CHE. Mask wearing detection based on improved YOLOv7[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(8): 1139

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 8, 2022

    Accepted: --

    Published Online: Oct. 9, 2023

    The Author Email: Jun-wei GAO (qdgao163@163.com)

    DOI:10.37188/CJLCD.2022-0371

    Topics