Journal of Inorganic Materials, Volume. 39, Issue 8, 895(2024)
[1] ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects[J]. Journal of Inorganic Materials(2019).
[2] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials(2008).
[3] WU Z, HU Z. Perspective—powerful micro/nano-scale heat engine: thermoelectric converter on chip[J]. ECS Sensors Plus(2022).
[4] ZHU T, LIU Y, FU C et al. Compromise and synergy in high- efficiency thermoelectric materials[J]. Advanced Materials(2017).
[5] LIU Y, ZAMANIPOUR Z, VASHAEE D. Economical FeSi2-SiGe composites for thermoelectric power generation[J]. 2012 IEEE Green Technologies Conference, Tulsa(2012).
[6] MAKITA Y, OOTSUKA T, FUKUZAWA Y et al[conf-proc]. β-FeSi2 as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application(2006).
[7] CABALLERO-CALERO O, ARES J R, MARTÍN-GONZÁLEZ M. Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth[J]. Advanced Sustainable Systems(2021).
[8] ITO M, NAGAI H, ODA E et al. Thermoelectric properties of
[9] LAILA A, NANKO M, TAKEDA M. Upgrade recycling of cast iron scrap chips towards
[10] DUSAUSOY Y, PROTAS J, WANDJI R et al. Structure cristalline du disiliciure de fer, FeSi2
[11] CHAI J, MING C, DU X et al. Thermodynamics, kinetics and electronic properties of point defects in
[12] DU X, QIU P, CHAI J et al. Doubled thermoelectric figure of merit in p-type
[13] DU X, HU P, MAO T et al. Ru alloying induced enhanced thermoelectric performance in FeSi2-based compounds[J]. ACS Applied Materials & Interfaces, 32151(2019).
[14] QIU P, CHENG J, CHAI J et al. Exceptionally heavy doping boosts the performance of iron silicide for refractory thermoelectrics[J]. Advanced Energy Materials(2022).
[15] TANI J I, KIDO H. Electrical properties of Co-doped and Ni-doped
[16] TANI J I, KIDO H. Thermoelectric properties of
[17] SAM S, ODAGAWA S, NAKATSUGAWA H et al. Effect of Ni substitution on thermoelectric properties of bulk
[18] TANI J I, KIDO H. Thermoelectric properties of Pt-doped
[19] TANI J I, KIDO H. Thermoelectric properties of Mn-doped
[20] CHEN H Y, ZHAO X B, LU Y F et al. Microstructures and thermoelectric properties of Fe0.92Mn0.08Si
[21] TANI J I, KIDO H. Electrical properties of Cr-doped
[22] KIM S W, CHO M K, MISHIMA Y et al. High temperature thermoelectric properties of p- and n-type
[23] EHARA T, NAITO S, NAKAGOMI S et al. Phosphorous doping in beta-irondisilicide by co-sputtering method[J]. Materials Letters(2002).
[24] EHARA T, NAKAGOMI S, KOKUBUN Y. Preparation of phosphorous dope beta-irondisilicide thin films and application for devices[J]. Solid-State Electronics(2003).
[25] ITO M, NAGAI H, ODA E et al. Effects of P doping on the thermoelectric properties of
[26] GOLDBECK O K[M]. Iron-Silicon//IRON-Binary Phase Diagrams.
[27] YANG L, CHEN Z G, DARGUSCH M S et al. High performance thermoelectric materials: progress and their applications[J]. Advanced Energy Materials(2018).
[28] KIM H S, GIBBS Z M, TANG Y L et al. Characterization of Lorenz number with Seebeck coefficient measurement[J]. APL Materials(2015).
[29] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Physical Review(1959).
[30] LIU H, YANG J, SHI X et al. Reduction of thermal conductivity by low energy multi-Einstein optic modes[J]. Journal of Materiomics(2016).
[31] SHEN J J, FANG T, FU T Z et al. Lattice thermal conductivity in thermoelectric materials[J]. Journal of Inorganic Materials(2019).
[32] ZHOU Z Z, YAN Y C, YANG X L et al. Anomalous lattice thermal conductivity driven by all-scale electron-phonon scattering in bulk semiconductors[J]. Physical Review B(2023).
[33] ZHU T, YU G, XU J et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials[J]. Advanced Electronic Materials(2016).
[34] QIN Y T, QIU P F, SHI X et al. Thermoelectric properties for CuInTe2-
[35] XIE H, SU X, ZHENG G et al. The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1-
[36] YANG J, MORELLI D T, MEISNER G P et al. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-
[37] NAGAI H, TAKAMATSU T, IIJIMA Y et al. Effects of Ge substitution on thermoelectric properties of CrSi2[J]. Japanese Journal of Applied Physics(2016).
[38] ZHOU A J, ZHU T J, ZHAO X B et al. Improved thermoelectric performance of higher manganese silicides with Ge additions[J]. Journal of Electronic Materials, 2002(2010).
[39] DU R, ZHANG G, HAO M et al. Enhanced thermoelectric performance of Mg-doped AgSbTe2 by inhibiting the formation of Ag2Te[J]. ACS Applied Materials & Interfaces(2023).
[40] WANG Y, ZHANG X, LIU Y et al. Optimizing the thermoelectric performance of p-type Mg3Sb2 by Sn doping[J]. Vacuum(2020).
[41] LI J C, LI D, QIN X Y et al. Enhanced thermoelectric performance of p-type SnSe doped with Zn.[J]. Scripta Materialia(2017).
Get Citation
Copy Citation Text
Jun CHENG, Jiawei ZHANG, Pengfei QIU, Lidong CHEN, Xun SHI.
Category:
Received: Jan. 8, 2024
Accepted: --
Published Online: Dec. 12, 2024
The Author Email: Jiawei ZHANG (jiaweizhang@mail.sic.ac.cn), Xun SHI (xshi@mail.sic.ac.cn)