Laser Technology, Volume. 48, Issue 5, 628(2024)

An airborne point cloud roof plane extraction algorithm based on deep learning

LI Jie1, LI Qingqing1, LI Li2, LIU Zhao1, SHEN Yang1, and TU Jingmin1、*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
  • 2School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • show less
    References(27)

    [10] [10] XU Y, TONG X, STILLA U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry[J]. Automation in Construction, 2021, 126(6): 1-26.

    [13] [13] BALLARD D H. Generalizing the Hough transform to detect arbitrary shape[J]. Pattern Recognition, 1981, 13(2): 111-122.

    [14] [14] FISHLER M A, BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.

    [15] [15] XU L, OJA E. Randomized Hough transform (RHT): Basic mechanisms, algorithms, and computational complexities[J]. CVGIP: Image Understanding, 1993, 57(2): 131-154.

    [16] [16] KIRYATI N, ELDAR Y, BRUCKSTEIN A M. A probabilistic Hough transform[J]. Pattern Recognition, 1991, 24(4): 303-316.

    [17] [17] YLA-JAASKI A, KIRYATI N. Adaptive termination of voting in the probabilistic circular Hough transform[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1994, 16(9): 911-915.

    [20] [20] XU B, JIANG W Sh, SHAN J, et al. Investigation on the weighted RANSAC approaches for building roof plane segmentation from LiDAR point clouds[J]. Remote Sensing, 2015, 8(1): 01005.

    [21] [21] LI Z, SHAN J. RANSAC-based multi primitive building reconstruction from 3D point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185(3): 247-260.

    [24] [24] CHEN H, LIANG M, LIU W, et al. An approach to boundary detection for 3D point clouds based on DBSCAN clustering[J]. Pattern Recognition, 2022, 124(4): 108431.

    [25] [25] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. Honolulu, USA: IEEE, 2017: 652-660.

    [26] [26] QI C R, YI L, SU H, et al. PointNet + +: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30(12): 5105-5114.

    [27] [27] WU W, QI Z, FUXIN L. Pointconv: Deep convolutional networks on 3d point clouds[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 9621-9630.

    [28] [28] HU Q, YANG B, XIE L, et al. Randla-net: Efficient semantic segmentation of large-scale point clouds[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 11108-11117.

    [29] [29] YI L, ZHAO W, WANG H, et al. Gspn: Generative shape proposal network for 3D instance segmentation in point cloud[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 3947-3956.

    [30] [30] WANG X, LIU S, SHEN X, et al. Associatively segmenting instances and semantics in point clouds[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 4096-4105.

    [31] [31] PHAM Q H, NGUYEN T, HUA B S, et al. JSIS3D: Joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 8827-8836.

    [32] [32] JIANG L, ZHAO H, SHI S, et al. Pointgroup: Dual-set point grouping for 3D instance segmentation[C]// Proceedings of the IEEE/CVF conference on computer vision and Pattern recognition. Seattle, USA: IEEE, 2020: 4867-4876.

    [33] [33] MAHMUD J, PRICE T, BAPAT A, et al. Boundary-aware 3D building reconstruction from a single overhead image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 441-451.

    [34] [34] ZHANG C Q, FAN H C. An improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds[J]. The Photogrammetric Record, 2022, 37(179): 260-284.

    [35] [35] WICHMANN A, AGOUB A, KADA M. RoofN3D: Deep learning training data for 3D building reconstruction[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42(5): 1191-1198.

    [36] [36] LI L, SONG N, SUN F, et al. Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193(11): 17-28.

    [37] [37] REN M, ZEMEL R S. End-to-end instance segmentation with recurrent attention[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 6656-6664.

    [38] [38] LIU S, JIA J, FIDLER S, et al. SGN: Sequential grouping networks for instance segmentation[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 3496-3504.

    [39] [39] ZHUO W, SALZMANN M, HE X, et al. Indoor scene parsing with instance segmentation, semantic labeling and support relationship inference[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 5429-5437.

    [40] [40] de BRABANDERE B, NEVEN D, van GOOL L. Semantic instance segmentation with a discriminative loss function[J/OL]. (2017-08-08) [2023-08-16]. https://arxiv.org/abs/1708.02551.

    [41] [41] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point cloud shape detection[C]// Computer Graphics Forum. Oxford, UK: Blackwell Publishing Ltd, 2007: 214-226.

    [42] [42] LAFARGE F, MALLET C. Creating large-scale city models from 3D-point clouds: A robust approach with hybrid representation[J]. International Journal of Computer Vision, 2012, 99(2): 69-85.

    Tools

    Get Citation

    Copy Citation Text

    LI Jie, LI Qingqing, LI Li, LIU Zhao, SHEN Yang, TU Jingmin. An airborne point cloud roof plane extraction algorithm based on deep learning[J]. Laser Technology, 2024, 48(5): 628

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 24, 2023

    Accepted: Dec. 2, 2024

    Published Online: Dec. 2, 2024

    The Author Email: TU Jingmin (jingmin.tu@hbut.edu.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2024.05.003

    Topics