Acta Optica Sinica, Volume. 34, Issue s1, 101002(2014)

Propagation Characteristics of Beam Higher-Order Moments by Using Matrix Formulae

Li Xiaoqing1,2、* and Ji Xiaoling1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] H Weber. Propagation of higher-order intensity moments in quadratic-index media [J]. Optical and Quantum Electronics, 1992, 24(9): S1027-S1049.

    [2] [2] P P Martinez-Herrero, P M Mejias, H Weber. On the different definitions of laser beam moments [J]. Optical and Quantum Electronics, 1993, 25(6): 423-428.

    [3] [3] M Sanchez, J L H Neira, J Delgado, et al.. Free propagation of high order moments of laser beam intensity distribution [C]. SPIE, 1990, 1397: 635-638.

    [4] [4] D Dragoman. Higher-order moments of the Wigner distribution function in first-order optical systems [J]. J Opt Soc Am A, 1994, 11(10): 2643-2646.

    [5] [5] D Onciul. Invariance properties of general astigmatic beams through first-order optical systems [J]. J Opt Soc Am A, 1993, 10(2): 295-299.

    [6] [6] L C Andrews, R L Phillips. Laser Beam Propagation through Random Media (2nd edtion) [M]. Bellingham: SPIE Press, 2005.

    [7] [7] Y Dan, B Zhang. Second moments of partially coherent beams in atmospheric turbulence [J]. Opt Lett, 2009, 34(5): 563-565.

    [8] [8] X Chu. Moment and kurtosis parameter of partially coherent cosh-Gaussian beam in turbulent atmosphere [J]. Appl Phys B, 2011, 103(4): 1013-1019.

    [9] [9] Li Xiaoqing, Ji Xiaoling. Beam matrix in terms of second-order moments of truncated beams [J]. Acta Optica Sinica, 2012, 32(7): 0701003.

    [10] [10] X Q Li, X L Ji. Propagation of higher-order intensity moments through an optical system in atmospheric turbulence [J]. Opt Commun, 2013, 298: 1-7.

    [11] [11] X Q Li, X L Ji, T Wang, et al.. Matrix formulation of higher-order moments of partially coherent beams propagating through atmospheric turbulence along a slanted path [J]. J Opt, 2013, 15(12): 125720.

    [12] [12] A N Kolmogorov. The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers [C]. Dokl Nauk SSSR, 1941, 30(4): 301-305.

    [13] [13] C H Rao, W H Jiang, N Ling. Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence [J]. J Mod Opt, 2000, 47(6): 1111-1126.

    [14] [14] A Zilberman, E Golbraikh, N S Kopeika. Lidar studies of aerosols and non Kolmogorov turbulence in the Mediterranean troposphere [J]. SPIE, 2005, 5987: 598702.

    [15] [15] I Toselli, L C Andrews, R L Phillips, et al.. Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence [C]. SPIE, 2007, 6551: 65510E.

    [16] [16] J Deng, X Ji, Z Pu, et al.. Influence of polychroism and decentration on spreading of laser beams and propagating in non-Kolmogorov turbulence [J]. Opt Commun, 2013, 301-302: 19-28.

    [17] [17] R Tao, L Si, Y Ma, et al.. Average spreading of finite energy Airy beams in non-Kolmogorov turbulence [J]. Opt Lasers Eng, 2013, 51(4): 488-492.

    [18] [18] Tao Rumao, Si Lei, Ma Yanxing, et al.. Propagation of truncated partially coherent cosh-Gaussian beam in non-Kolmogorov turbulence [J]. Chinese J Lasers, 2013, 40(5): 0502008.

    [19] [19] Chen Feinan, Chen Jingjing, Zhao Qi, et al.. Properties of high order Bessel Gaussian beam propagation in non-Kolmogorov atmosphere turbulence [J]. Chinese J Lasers, 2012, 39(9): 0913001.

    [20] [20] H T Yura, S G Hanson. Optical beam wave propagation through complex optical systems [J]. J Opt Soc Am A, 1987, 4(10): 1931-1948.

    [21] [21] I S Gradshteyn, I M Ryzhik. Table of Integrals, Series, and Products (7th edition) [M]. New York: Academic Press, 2007.

    [22] [22] H M Ozaktas, M A Kutay, Z Zalevsky. The Fractional Fourier Transform with Applications in Optics and Signal Processing [M]. New York: John Wiley & Sons, 2000.

    [23] [23] J Serna, R Martinez-Herrero, P M Mejias. Parametric characterization of general partially coherent beams propagating through ABCD optical systems [J]. J Opt Soc Am A, 1991, 8(7): 1094-1098.

    [24] [24] R Martinez-Herrero, G Piquero, P M Mejias. On the propagation of the kurtosis parameter of general beams [J]. Opt Commun, 1995, 115(3-4): 225-232.

    CLP Journals

    [1] Hu Xiaochuan, He Yehuan, Wu Shuang, Zhang Bin. Effect of axial wind speed in inner propagation channel on phase characteristics of high-power lasers[J]. Infrared and Laser Engineering, 2016, 45(8): 806003

    [2] Wan Jing, Xiong Han, Zhang Xiang, Zhuang Zhenwu, Yuan Xiao. Beam Propagation Characteristics in Four-Cylindrical-Lens Slit Spatial Filter[J]. Acta Optica Sinica, 2015, 35(9): 907001

    [3] Hu Xiaochuan, Wang Du, Chen Lixia, Zhang Bin. Effect Analysis of Self-Correction Method Based on the Prediction Model of Deformable Mirror with Thermal Deformation[J]. Chinese Journal of Lasers, 2015, 42(12): 1202001

    [4] Peng Jiaqi, Hu Xiaochuan, Chen Lixia, Zhang Bin. Effect of Structural Parameters of Deformable Mirrors on Phase Characteristics of High-Power Laser[J]. Acta Optica Sinica, 2015, 35(5): 514001

    Tools

    Get Citation

    Copy Citation Text

    Li Xiaoqing, Ji Xiaoling. Propagation Characteristics of Beam Higher-Order Moments by Using Matrix Formulae[J]. Acta Optica Sinica, 2014, 34(s1): 101002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 20, 2013

    Accepted: --

    Published Online: Jun. 30, 2014

    The Author Email: Li Xiaoqing (lixiaoqing912@163.com)

    DOI:10.3788/aos201434.s101002

    Topics