Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1751(2025)
Chloride-Based Superionic Conductors with High Electrode Compatibility
[1] [1] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat Mater, 2019, 18(12): 1278–1291.
[2] [2] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.
[3] [3] TAN D H S, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J]. Nat Nanotechnol, 2020, 15(3): 170–180.
[4] [4] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.
[5] [5] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4): 16030.
[6] [6] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394: 456–458.
[7] [7] MANUEL STEPHAN A, NAHM K S. Review on composite polymer electrolytes for lithium batteries[J]. Polymer, 2006, 47(16): 5952–5964.
[8] [8] HAN X G, GONG Y H, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nat Mater, 2017, 16(5): 572–579.
[9] [9] LUO W, GONG Y H, ZHU Y Z, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. J Am Chem Soc, 2016, 138(37): 12258–12262.
[10] [10] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv Mater, 2018, 30(44): e1803075.
[11] [11] KWAK H, HAN D, LYOO J, et al. New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Adv Energy Mater, 2021, 11(12): 2003190.
[12] [12] LI X N, LIANG J W, KIM J T, et al. Highly stable halide-electrolyte-based all-solid-state Li–Se batteries[J]. Adv Mater, 2022, 34(20): e2200856.
[13] [13] LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy Environ Sci, 2019, 12(9): 2665–2671.
[14] [14] LIANG J W, LI X N, WANG S, et al. Site-occupation-tuned superionic LixScCl3+xHalide solid electrolytes for all-solid-state batteries[J]. J Am Chem Soc, 2020, 142(15): 7012–7022.
[15] [15] LV H, LI Z Y, Ma C, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat Commun, 2023, 14:3807.
[16] [16] KANNO R, TAKEDA Y, TAKADA K, et al. Phase transition and ionic conductivity of the spinel system Li2–2xM1+xCl4 ( M = Mg , Mn , Cd )[J]. J Electrochem Soc, 131(3): 469–474.
[17] [17] TANIBATA N, TAKIMOTO S, NAKANO K, et al. Metastable chloride solid electrolyte with high formability for rechargeable all-solid-state lithium metal batteries[J]. ACS Mater Lett, 2020, 2(8): 880–886.
[18] [18] PARK J, HAN D, KWAK H, et al. Heat treatment protocol for modulating ionic conductivityviastructural evolution of Li3–xYb1–xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries[J]. Chem Eng J, 2021, 425: 130630.
[19] [19] SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors[J]. Adv Energy Mater, 2020, 10(6): 1903719.
[20] [20] ZHOU L D, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy Environ Sci, 2020, 13(7): 2056–2063.
[21] [21] ZHANG A B, WANG J, WANG J T, et al. Practical application of Li-Rich materials in halide all-solid-state batteries and interfacial reactions between cathodes and electrolytes[J]. ACS Appl. Mater. Interfaces 2023, 15, 8190−8199.
[22] [22] LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angew Chem Int Ed, 2019, 58(46): 16427–16432.
[23] [23] ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nat Energy, 2022, 7: 83–93.
[24] [24] ISHIGURO Y, UENO K, NISHIMURA S, et al. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high- performance all-solid-state lithium batteries[J]. Chem Lett, 2023, 52(4): 237–241.
[25] [25] WU Y C, LI F, CHENG X B, et al. Interface degradation of LaCl3-based solid electrolytes coupled with ultrahigh-nickel cathodes[J]. Nano Lett, 2024, 24(49): 15540–15546.
[26] [26] SCHNELL J, GNTHER T, KNOCHE T, et al. All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production[J]. J Power Sources, 2018, 382: 160–175.
[27] [27] CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74–96.
[28] [28] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angew Chem Int Ed, 2021, 60(12): 6718–6723.
[29] [29] WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nat Commun, 2021, 12(1): 4410.
[30] [30] YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77–83.
[32] [32] YU T W, LIANG J W, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J]. Adv Energy Mater, 2021, 11(36): 2101915.
[33] [33] FLORES-GONZLEZ N, MINAFRA N, DEWALD G, et al. Mechanochemical synthesis and structure of lithium tetrahaloaluminates, LiAlX4 (X = Cl, Br, I): A family of Li-ion conducting ternary halides[J]. ACS Mater Lett, 2021, 3(5): 652–657.
[34] [34] KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Mater Lett, 2021, 3(7): 930–938.
[35] [35] MUY S, VOSS J, SCHLEM R, et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors[J]. iScience, 2019, 16: 270–282.
[36] [36] STALLWORTH P E, FONTANELLA J J, WINTERSGILL M C, et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes[J]. J Power Sources, 1999, 81: 739–747.
[37] [37] SARUWATARI H, KUBOKI T, KISHI T, et al. Imidazolium ionic liquids containing LiBOB electrolyte for lithium battery[J]. J Power Sources, 2010, 195(5): 1495–1499.
[38] [38] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.
[39] [39] FU J M, WANG S, LIANG J W, et al. Superionic conducting halide frameworks enabled by interface-bonded halides[J]. J Am Chem Soc, 2023, 145(4): 2183–2194.
[40] [40] ZHAO N, GUO X X. A new family of halide electrolytes for all-solid-state lithium batteries[J]. Sci Bull, 2023, 68(15): 1598–1599.
[41] [41] TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm–1 for all-solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(13): e202217581.
[42] [42] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nat Energy, 2023, 8: 1221–1228.
[43] [43] LUO J D, ZHANG Y X, CHENG X B, et al. Halide superionic conductors with non-close-packed anion frameworks[J]. Angew Chem Int Ed, 2024, 63(17): e202400424.
[44] [44] CHEN K, HAO X X, JIANG M, et al. Water-mediated synthesis of cost-effective Fe3+ substituted LaCl3-based halide solid-state electrolyte[J]. J Alloys Compd, 2024, 997: 174945.
[45] [45] WANG G Z, ZHANG S M, WU H, et al. Oxychloride polyanion clustered solid-state electrolytesviahydrate-assisted synthesis for all-solid-state batteries[J]. Adv Mater, 2025, 37(4): e2410402.
[46] [46] LIU M C, HONG J J, SEBTI E, et al. Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air[J]. Nat Commun, 2025, 16(1): 213.
[47] [47] HUANG Y Y, ZHOU L D, LI C, et al. Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries[J]. ACS Energy Lett, 2023, 8(11): 4949–4956.
[48] [48] ROSENBACH C, WALTHER F, RUHL J, et al. Visualizing the chemical incompatibility of halide and sulfide-based electrolytes in solid-state batteries[J]. Adv Energy Mater, 2023, 13(6): 2203673.
[49] [49] SAMANTA S, BERA S, BISWAS R K, et al. Ionocovalency of the central metal halide bond-dependent chemical compatibility of halide solid electrolytes with Li6PS5Cl[J]. ACS Energy Lett, 2024, 9(8): 3683–3693.
[50] [50] LI F, CHENG X B, YAO H B, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Lett, 2022, 22, 2461−2469.
[51] [51] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Lett, 2022, 7(5): 1776–1805.
[52] [52] ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nat Commun, 2023, 14(1): 3780.
[53] [53] WANG S H, XU X W, CUI C, et al. Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure[J]. Adv Funct Mater, 2022, 32(7): 2108805.
Get Citation
Copy Citation Text
YANG Zhangchi, YAO Hongbin, YIN Yichen, LUO Jinda. Chloride-Based Superionic Conductors with High Electrode Compatibility[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1751
Category:
Received: Dec. 7, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: YIN Yichen (artist@ustc.edu.cn)