Frontiers of Optoelectronics, Volume. 17, Issue 1, 12200(2024)

High power tunable Raman fiber laser at 1.2 μm waveband

Yang Zhang1, Jiangming Xu1、*, Junrui Liang1, Jun Ye1,2, Sicheng Li3, Xiaoya Ma3, Zhiyong Pan1,2, Jinyong Leng1,2, and Pu Zhou3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    References(45)

    [1] [1] Engelmann, S.A., Zhou, A., Hassan, A.M., Williamson, M.R., Jarrett, J.W., Perillo, E.P., Tomar, A., Spence, D.J., Jones, T.A., Dunn, A.K.: Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. Biomed. Opt. Express 13(4), 1888–1898 (2022)

    [2] [2] Yang, X., Zhang, L., Feng, Y., Zhu, X., Norwood, R.A., Peyghambarian, N.: Mode-locked Ho3+- doped ZBLAN fiber laser at 1.2 μm. J. Lightwave Technol. 34(18), 4266–4270 (2016)

    [3] [3] Anquez, F., Courtade, E., Sivéry, A., Suret, P., Randoux, S.: A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt. Express 18(22), 22928–22936 (2010)

    [4] [4] Poem, E., Golenchenko, A., Davidson, O., Arenfrid, O., Finkelstein, R., Firstenberg, O.: Pulsed-pump phosphorus-doped fiber Raman amplifier around 1260 nm for applications in quantum non-linear optics. Opt. Express 28(22), 32738–32749 (2020)

    [5] [5] Wanner, M., Avram, M., Gagnon, D., Mihm, M.C., Jr., Zurakowski, D., Watanabe, K., Tannous, Z., Anderson, R.R., Manstein, D.: Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study. Lasers Surg. Med. 41(6), 401–407 (2009)

    [6] [6] Murray, R.T., Chandran, A.M., Battle, R.A., Runcorn, T.H., Schunemann, P.G., Zawilski, K.T., Guha, S., Taylor, J.R.: Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 μm. Opt. Lett. 46(9), 2039–2042 (2021)

    [7] [7] Chandran, A.M., Runcorn, T.H., Murray, R.T., Taylor, J.R.: Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier. Opt. Lett. 44(24), 6025– 6028 (2019)

    [8] [8] Yang, X., Bai, Z., Chen, D., Chen, W., Feng, Y., Mildren, R.P.: Widely-tunable single-frequency diamond Raman laser. Opt. Express 29(18), 29449–29457 (2021)

    [9] [9] Wu, H., Wang, W., Hu, B., Li, Y., Tian, K., Ma, R., Li, C., Liu, J., Yao, J., Liang, H.: Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser. Photon. Res. 11(5), 808–816 (2023)

    [10] [10] Mogg, S., Chitica, N., Schatz, R., Hammar, M.: Properties of highly strained InGaAs/GaAs quantum wells for 1.2-μm laser diodes. Appl. Phys. Lett. 81(13), 2334–2336 (2002)

    [11] [11] Moller, C., Fuchs, C., Berger, C., Ruiz Perez, A., Koch, M., Hader, J., Moloney, J.V., Koch, S.W., Stolz, W.: Type-II vertical- external-cavity surface-emitting laser with Watt level output powers at 1.2 μm. Appl. Phys. Lett. 108(7), 071102 (2016)

    [12] [12] Liu, Y., Zhu, C., Sun, Y., Mildren, R.P., Bai, Z., Zhang, B., Chen, W., Chen, D., Li, M., Yang, X., Feng, Y.: High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering. High Power Laser Sci. Eng. 11, e72 (2023)

    [13] [13] Sun, Y., Li, M., Kitzler, O., Mildren, R.P., Bai, Z., Zhang, H., Lu, J., Feng, Y., Yang, X.: Stable high-efficiency continuouswave diamond Raman laser at 1178 nm. Laser Phys. Lett. 19(12), 125001 (2022)

    [14] [14] Vatnik, I.D., Churkin, D.V., Babin, S.A., Turitsyn, S.K.: Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. Opt. Express 19(19), 18486–18494 (2011)

    [15] [15] Zhang, H., Xiao, H., Zhou, P., Wang, X., Xu, X.: High-power random distributed feedback Raman fiber laser operating at 1.2-μm. Chin. Opt. Lett. 12(Suppl), S21410 (2014)

    [17] [17] Yang, X., Zhang, L., Zhu, X., Feng, Y.: Wavelength-tunable, dual-wavelength Q-switched Ho3+- doped ZBLAN fiber laser at 12 μm. Appl. Phys. B 124(10), 198 (2018)

    [18] [18] Thipparapu, N.K., Wang, Y., Wang, S., Umnikov, A.A., Barua, P., Sahu, J.K.: Bi-doped fiber amplifiers and lasers. Opt. Mater. Express 9(6), 2446–2465 (2019)

    [19] [19] Xu, C., Li, X., Shen, Y., Zhang, J., Jia, S., Farrell, G., Wang, S., Wang, P.: Laser operation at 1.2 μm in Ho3+- doped ZBYA glass fibers. Opt. Lett. 48(12), 3263–3266 (2023)

    [20] [20] Supradeepa, V.R., Nicholson, J.W.: Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Opt. Lett. 38(14), 2538–2541 (2013)

    [21] [21] Zhang, L., Dong, J., Feng, Y.: High-power and high-order random Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24(3), 1400106 (2018)

    [22] [22] Wu, H., Han, B., Liu, Y.: Tunable narrowband cascaded random Raman fiber laser. Opt. Express 29(14), 21539–21550 (2021)

    [23] [23] Deheri, R., Dash, S., Supradeepa, V.R., Balaswamy, V.: Cascaded Raman fiber lasers with ultrahigh spectral purity. Opt. Lett. 47(14), 3499–3502 (2022)

    [24] [24] de Oliveira, M., Aitken, B., Eckert, H.: Structure of P2O5-SiO2 pure network former glasses studied by solid state NMR spectroscopy. J. Phys. Chem. C 122(34), 19807–19815 (2018)

    [25] [25] Shcheblanov, N.S., Giacomazzi, L., Povarnitsyn, M.E., Kohara, S., Martin-Samos, L., Mountjoy, G., Newport, R.J., Haworth, R.C., Richard, N., Ollier, N.: Vibrational and structural properties of P2O5 glass: advances from a combined modeling approach. Phys. Rev. B 100(13), 134309 (2019)

    [26] [26] Song, J., Xu, J., Zhang, Y., Ye, J., Zhou, P.: Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity. Opt. Express 27(16), 23095–23102 (2019)

    [27] [27] Wu, H., Wang, W., Hu, B., Ma, R., Liu, J., Liang, H.: Multi-color switchable visible light source generated via nonlinear frequency conversion of a random fiber laser. Opt. Express 30(25), 44785–44797 (2022)

    [28] [28] Dianov, E.M., Grekov, M.V., Bufetov, I.A., Vasiliev, S.A., Medvedkov, O.I., Plotnichenko, V.G., Koltashev, V.V., Belov, A.V., Bubnov, M.M., Semjonov, S.L., Prokhorov, A.M.: CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre. Electron. Lett. 33(18), 1542–1544 (1997)

    [29] [29] Dianov, E.M., Prokhorov, A.M.: Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000)

    [30] [30] Kim, N.S., Prabhu, M., Li, C., Song, J., Ueda, K.: 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral. Opt. Commun. 176(1–3), 219–222 (2000)

    [31] [31] Sim, S.K., Lim, H.C., Lee, L.W., Chia, L.C., Wu, R.F., Cristiani, I., Rini, M., Degiorgio, V.: High-power cascaded Raman fibre laser using phosphosilicate fiber. Electron. Lett. 40(12), 738–739 (2004)

    [32] [32] Luo, Z., Cai, Z., Huang, J., Ye, C., Huang, C., Xu, H., Zhong, W.D.: Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity. Opt. Lett. 33(14), 1602–1604 (2008)

    [33] [33] Babin, S.A., Vatnik, I.D., Laptev, AYu., Bubnov, M.M., Dianov, E.M.: High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express 22(21), 24929–24934 (2014)

    [34] [34] Lobach, I.A., Kablukov, S.I., Babin, S.A.: Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm. Opt. Lett. 42(18), 3526–3529 (2017)

    [35] [35] Kharenko, D.S., Efremov, V.D., Evmenova, E.A., Babin, S.A.: Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express 26(12), 15084–15089 (2018)

    [36] [36] Xiong, Z., Moore, N., Li, Z.G., Lim, G.C.: 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers. J. Lightwave Technol. 21(10), 2377–2381 (2003)

    [37] [37] Dong, J., Zhang, L., Zhou, J., Pan, W., Gu, X., Feng, Y.: More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 44(7), 1801–1804 (2019)

    [38] [38] Ye, J., Zhang, Y., Xu, J., Song, J., Yao, T., Xiao, H., Leng, J., Zhou, P.: Investigations on the extreme frequency shift of phosphosilicate random fiber laser. J. Lightwave Technol. 38(14), 3737–3744 (2020)

    [39] [39] Ye, J., Fan, C., Xu, J., Xiao, H., Leng, J., Zhou, P.: 2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Sci. Eng. 9, e55 (2021)

    [40] [40] Cheng, X., Cui, S., Zeng, X., Zhou, J., Feng, Y.: Spectral and RIN properties of a single-frequency Raman fiber amplifier copumped by ASE source. Opt. Express 29(10), 15764–15771 (2021)

    [41] [41] Zhang, Y., Song, J., Ye, J., Xu, J., Yao, T., Zhou, P.: Tunable random Raman fiber laser at 1.7 μm region with high spectral purity. Opt. Express 27(20), 28800–28807 (2019)

    [42] [42] Ye, J., Ma, X., Zhang, Y., Xu, J., Zhang, H., Yao, T., Leng, J., Zhou, P.: From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX 2(1), 15 (2021)

    [43] [43] Balaswamy, V., Ramachandran, S., Supradeepa, V.R.: Highpower, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Opt. Express 27(7), 9725–9732 (2019)

    [44] [44] Zhang, Y., Xu, J., Ye, J., Song, J., Yao, T., Zhou, P.: Ultralowquantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photon. Res. 8(7), 1155–1160 (2020)

    [45] [45] Ma, X., Xu, J., Ye, J., Zhang, Y., Huang, L., Yao, T., Leng, J., Pan, Z., Zhou, P.: Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Sci. Eng. 10, e8 (2022)

    [46] [46] Wang, M., Wang, Z., Liu, L., Hu, Q., Xiao, H., Xu, X.: Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings. Photon. Res. 7(2), 167–171 (2019)

    Tools

    Get Citation

    Copy Citation Text

    Yang Zhang, Jiangming Xu, Junrui Liang, Jun Ye, Sicheng Li, Xiaoya Ma, Zhiyong Pan, Jinyong Leng, Pu Zhou. High power tunable Raman fiber laser at 1.2 μm waveband[J]. Frontiers of Optoelectronics, 2024, 17(1): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Nov. 25, 2023

    Accepted: Dec. 24, 2023

    Published Online: Aug. 8, 2024

    The Author Email: Jiangming Xu (jmxu1988@163.com)

    DOI:10.1007/s12200-024-00105-7

    Topics