Laser Technology, Volume. 47, Issue 3, 345(2023)
Research progress on thinning quartz glass by femtosecond laser ablation
[1] [1] YAMANE K, KITO T, MORITA R, et al. 2.8-fs transform-limited optical-pulse generation in the monocycle region[C]//Conference on Lasers and Electro-Optics. New York, USA: IEEE, 2004: 1045-1047.
[2] [2] PERRY M D, PENNINGTON D, STUART B C, et al. Petawatt laser pulses[J]. Optics Letters, 1999, 24(3): 160-162.
[3] [3] LOZHKAREV V V, FREIDMAN G I, GINZBURG V N, et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification[J]. Optics Express, 2006, 14(1): 446-454.
[4] [4] DU Y Sh, YUAN Sh, WANG Y, et al. 706 MHz high repetition rate femtosecond Yb-doped fiber laser[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0914004(in Chinese).
[5] [5] SUN Q, JIANG H B, LIU Y, et al. Diagnose parameters of plasma induced by femtosecond laser pulse in quartz and glasses[J]. Frontiers of Physics in China, 2006, 1(1): 67-71.
[6] [6] JUODKAZIS S, MISAWA H, HASHIMOTO T, et al. Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids[J]. Applied Physics Letters, 2006, 88(20): 201909.
[7] [7] GAMALY E G, JUODKAZIS S, NISHIMURA K, et al. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation[J]. Physical Review, 2006, B73(21): 214101.
[8] [8] HARZIC R L, HUOT N, AUDOUARD E, et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 2002, 80(21): 3886-3888.
[9] [9] NEDIALKOV N N, IMAMOVA S E, ATANASOV P A. Ablation of metals by ultrashort laser pulses[J]. Journal of Physics, 2004, D37(4): 638-643.
[10] [10] CHICBKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Phy-sics, 1996, A63(2): 109-115.
[11] [11] KAUTEK W, KRGER J. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps[J]. Applied Physics Letters, 1996, 69(21): 3146-3148.
[12] [12] SIMA F, SUGIOKA K, VZQUEZ R M, et al. Three dimensional femtosecond laser processing for lab-on-a-chip applications[J]. Nanophotonics, 2018, 7(3): 613-634.
[13] [13] CROUCH C H, CAREY J E, WARRENDER J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 2004, 84(11): 1850-1852.
[14] [14] LU H, YA Q Q, YUN F J, et al. Spheroidal trap shell beyond di-ffraction limit induced by nonlinear effects in femtosecond laser tra-pping[J]. Nanophotonics, 2020, 9(14): 4315-4325.
[15] [15] DACHRAOUI H, HUSINSKY W, BETZ G. Ultra-short laser ablation of metals and semiconductors: Evidence of ultra-fast coulomb explosion[J]. Applied Physics, 2006, A83(2): 333-336.
[16] [16] CHEN C, YU Y S, YANG R, et al. Monitoring thermal effect in femtosecond laser interaction with glass by fiber Bragg grating[J]. Journal of Lightwave Technology, 2011, 29(14):2126-2130.
[17] [17] SHAN C, YANG Q, BIAN H, et al. Fabrication of three dimensional microvalves of internal nested structures inside fused silica[J]. Micromachines, 2021, 12(1): 43.
[18] [18] CRESPI A, OSELLAME R, BRAGHERI F. Femtosecond laser wri-tten optofluidics in alumino-borosilicate glass[J]. Optical Materials, 2019, X4: 100042.
[19] [19] PANG J W, WANG Ch, CAI Y K. Research progress of laser processing technology for glass materials[J]. Laser Technology, 2021, 45(4): 417-428(in Chinese).
[22] [22] GUO X G, ZHAI R F, KANG R K, et al. Study of the influence of tool rake angle in ductile machining of optical quartz glass[J]. Journal of Advanced Manufacturing Technology, 2019, 104: 803-813.
[23] [23] LUO J J, GILBERT L J, DOUGLAS A, et al. Additive manufacturing of glass for optical applications[J]. Society of Photo-Optical Instrumentation Engineers, 2016, 9738: 97380Y.
[24] [24] ZHOU S Y. Experiment and simulation of microstructure machining on quartz glass by femtosecond laser[D]. Dalian: Dalian University of Technology, 2015: 1-2(in Chinese).
[25] [25] AMS M, MARSHALL G D, WITHFORD M J. Study of the influence of femtosecond laser polarisation on direct writing of waveguides[J]. Optical Express, 2006, 14(26): 58-63.
[26] [26] GUO B, SUN J, HUA Y, et al. Femtosecond laser micro/nano-manufacturing: Theories, measurements, methods, and applications[J]. Nanomanufacturing and Metrology, 2020, 3: 26-67.
[27] [27] ZHANG B, LIU X F, QIU J R. Single femtosecond laser beam induced nanogratings in transparent media-mechanisms and applications[J]. Journal of Materiomics, 2019, 5(1): 1-14.
[28] [28] SAKAKURA M, LEI Y H, WANG L, et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Science & Applications, 2020, 9: 15.
[29] [29] MIRZA I, BULGAKOVA N M, TOMTK J, et al. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown[J]. Scientific Reports, 2016, 6: 39133.
[30] [30] YU X M, BIAN Q M, CHANG Z H, et al. Femtosecond laser nanomachining initiated by ultraviolet multiphoton ionization[J]. Optics Express, 2013, 21(20): 24185-24190.
[31] [31] LIU X Q, BAI B F, CHEN Q D, et al. Etching-assisted femtosecond laser modification of hard materials[J]. Opto-Electronic Advances, 2019, 2(9): 190021.
[32] [32] LIU X, DU D, MOUROU G. Laser ablation and micromachining with ultrashort laser pulses[J]. Journal of Quantum Electronics, 1997, 33(10): 1706-1716.
[33] [33] BUTKUT A, JONUAUSKAS L. 3-D manufacturing of glass microstructures using femtosecond laser[J]. Micromachines, 2021, 12(5): 499.
[34] [34] HU K L, GUO Z Y, CAO T. Study on the polarization dependence of nonlinear absorption of ultrafast laser pulses in bulk fused silica[J]. Optics Express, 2022, 30(6): 8949-8958.
[35] [35] DU D, LIU X, KORN G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 1994, 64(23): 3071-3073.
[36] [36] THORNBER K K. Applications of scaling to problems in highfield electronic transport[J]. Journal of Applied Physics, 1981, 52(1): 279-290.
[37] [37] ZHANG W T. Study on interaction between femtosecond laser and silicon nitride crystal[D]. Xi’an: Northwestern University, 2009: 26-27(in Chinese).
[38] [38] GOTTMANN J, HERMANS M, REPIEV N, et al. Selective laser-induced etching of 3-D precision quartz glass components for microfluidic applications[J]. Micromachines, 2017, 8(4): 110.
[39] [39] WEINGARTEN C, STEENHUSEN S, HERMANS M, et al. Laser polishing and 2PP structuring of inside microfluidic channels in fused silica[J]. Microfluidics and Nanofluidics, 2017, 21(11): 165.
[40] [40] QUESTE S, SALUT R, CLATOT S, et al. Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding[J]. Microsystem Technologies, 2010, 16:1485-1493.
[41] [41] ZHANG J, CˇERKAUSKAIT A, DREVINSKAS R, et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of the SPIE, 2016, 9736: 97360U.
[42] [42] HE J, XU B J, XU X Z, et al. Review of femtosecond laser inscribed fiber Bragg gratings: Fabrication technologies and sensing applications[J]. Photonic Sensors, 2021, 11(2): 203-226.
[43] [43] LIU Z M, LIAO Y, WANG Z H, et al. Fabrication of an optical waveguide-mode-field compressor in glass using a femtosecond laser[J]. Materials, 2018, 11(10): 1926.
[44] [44] MICHELE V D, ROYON M, MARIN E, et al. Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses[J]. Optical Materials Express, 2019, 9(12): 4624-4633.
[45] [45] GAUDFRIN K, DUCHATEAU G, MISHCHIK K, et al. Fused silica ablation by double femtosecond laser pulses with variable delays[J]. Proceedings of the SPIE, 2019, 10905: 109050H.
[46] [46] NIETO D, ARINES J, O’CONNOR G M, et al. Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500 fs, 10 ps, 20 ns[J]. Applied Optics, 2015, 54(29): 8596-8601.
[47] [47] GRF S, KUNZ C, ENGEL S, et al. Femtosecond laser-induced periodic surface structures on fused silica: The impact of the initial substrate temperature[J]. Materials, 2018, 11(8): 1340.
[48] [48] RADHAKRISHNAN A, GATEAU J, VLUGTER P, et al. Femtosecond laser-shockwave induced densification in fused silica[J]. Physics Optics, 2022, 2202: 13580.
[49] [49] JIAN D X, HOU Z Q, WANG C X, et al. Fabrication of fused silica microstructure based on the femtosecond laser[J]. AIP Advances, 2021, 11(9): 095218.
[50] [50] QI J, WANG Z H, XU J, et al. Femtosecond laser induced selective etching in fused silica: Optimization of the inscription conditions with a high-repetition-rate laser source[J]. Optics Express, 2018, 26(23): 29669-29678.
[51] [51] XIE X Z, ZHOU C X, WEI X, et al. Laser machining of transpa-rent brittle materials: From machining strategies to applications[J]. Opto-Electronic Advances, 2019, 2(1): 180017.
[52] [52] XU G, DAI Y T, CUI J L, et al. Simulation and experiment of femtosecond laser polishing quartz material[J]. Integrated Ferroelectrics, 2017, 181(1): 60-69.
[53] [53] WU D J, ZHOU S Y, MA G Y, et al. Experiment of quartz glass flute precise thinning by femtosecond laser[J]. Chinese Journal of Lasers, 2015, 42(3): 0303009(in Chinese).
[54] [54] YAN G S, ZHU J G, HUANG Y L, et al. Fabrication of micro-scale gratings for Moiré method with a femtosecond laser[J]. Theoretical and Applied Mechanics Letters, 2016, 6(4): 171-175.
[55] [55] VARKENTINA N, DUSSAUZE M, ROYON A, et al. High repetition rate femtosecond laser irradiation of fused silica studied by Raman spectroscopy[J]. Optical Materials Express, 2016, 6(1): 79-90.
[56] [56] RUEDA J H, CLARIJS J, OOSTEN D, et al. The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica[J]. Applied Physics Letters, 2016, 110(16): 161109.
[57] [57] KUNZ C, MLLER F A, GRF S. Multifunctional hierarchical surface structures by femtosecond laser processing[J]. Materials, 2018, 11(5): 789.
[58] [58] XU S Z, SUN K, YAO C Z, et al. Periodic surface structures on dielectrics upon femtosecond laser pulses irradiation[J]. Optics Express, 2019, 27(6): 8983-8993.
[59] [59] CHEN L, CAO K Q, LI Y L, et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens[J]. Opto-Electronic Advances, 2021, 4(12): 200036.
[60] [60] BONSE J, ROSENFELD A, KRüGER J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 2009, 106(10): 104910.
[61] [61] HUANG M, ZHAO F L, CHENG Y, et al. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062-4070.
[62] [62] MACˇERNYT L, SKRUIBIS J, VAICˇAITIS V, et al. Femtosecond laser micromachining of soda-lime glass in ambient air and under various aqueous solutions[J]. Micromachines, 2019, 10(6): 354.
[63] [63] SUN X Y, CUI D M, HU Y W, et al. Thermal process of silica glass microchannels fabricated by femtosecond laser ablation[J]. Chinese Optics Letters, 2018, 16(10): 101402.
[64] [64] GAUDIUSO C, VOLPE A, ANCONA A. One-step femtosecond laser stealth dicing of quartz[J]. Micromachines, 2020, 11(3): 327.
[65] [65] MOUSKEFTARAS A, BELLOUARD Y. Effect of the combination of femtosecond laser pulses exposure on the etching rate of fused silica in hydrofluoric acid[J]. Laser Micro/Nanoengineering, 2018, 13(1): 26-30.
[66] [66] SCHWARZ S, RUNG S, ESEN C, et al. Ultrashort pulsed laser backside ablation of fused silica[J]. Optics Express, 2021, 29(15): 23477-23486.
[67] [67] CHEN F, LIU H, YANG Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 2010, 18(19): 20334-20343.
[68] [68] DENG Z, YANG Q, CHEN F, et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2086-2089.
[69] [69] LI B Y, JIANG L, WANG S M, et al. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing[J]. Optics & Laser Technology, 2011, 43(8): 1420-1423.
[70] [70] CUI W, SI J H, CHEN T, et al. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper[J]. Optics Express, 2015, 23(9): 11031-11036.
[71] [71] LIN J T, YU S J, MA Y G, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing[J]. Optics Express, 2012, 20(9): 10212-10217.
Get Citation
Copy Citation Text
YAO Longyuan, LIU Chang. Research progress on thinning quartz glass by femtosecond laser ablation[J]. Laser Technology, 2023, 47(3): 345
Category:
Received: May. 10, 2022
Accepted: --
Published Online: Dec. 5, 2023
The Author Email: YAO Longyuan (yaolongyuan20@sdjzu.edu.cn)