Acta Optica Sinica, Volume. 37, Issue 11, 1128004(2017)

Aircraft Target Classification Method Based on Texture Feature of Laser Echo Time-Frequency Image

Yunpeng Wang, Yihua Hu*, Wuhu Lei, and Liren Guo
Author Affiliations
  • State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei, Anhui 230037, China
  • show less
    Figures & Tables(12)
    Time-frequency images of laser echo signal of three types of aircraft. (a) Helicopter; (b) propeller; (c) turbojet aircraft
    Pretreatment flow of time-frequency diagram
    Comparison of effect of gray scale before and after denoising. (a) Helicopter before denoising; (b) propeller before denoising; (c) turbojet aircraft before denoising; (d) helicopter after denoising; (e) propeller after denoising; (f) turbojet aircraft after denoising
    GLCM of time-frequency image of three types of aircraft. (a) Helicopter 0°; (b) propeller 0°; (c) turbojet aircraft 0°; (d) helicopter 90°; (e) propeller 90°; (f) turbojet aircraft 90°
    Change curves of GLCM features with different d. (a) C; (b) E; (c) H; (d) I; (e) V
    Tamura feature distribution of three types of aircraft
    Influence of noise on classification accuracy rate. (a) GLCM feature; (b) Tamura feature
    Comparison of classification performance of two kinds of feature under different SNR conditions
    • Table 1. GLCM feature parameter extraction algorithm

      View table

      Table 1. GLCM feature parameter extraction algorithm

      Feature parameterAlgorithmRange
      CorrelationGCor=i=1Gj=1G[i×j×P(i,j,d,θ)-u1×u2](d1×d2)[-1,1]
      Angular second moment (ASM)GASM=i=1Gj=1GP2(i,j,d,θ)[0,1]
      EntropyGEnt=-i=1Gj=1GP(i,j,d,θ)×lgP(i,j,d,θ)[0,1]
      ContrastGCon=i=1Gj=1G[(i-j)2×P(i,j,d,θ)][0,(G-1)2]
      HomogeneityGHom=-i=1Gj=1GP(i,j,d,θ)/[1+(i-j)2][0,1]
    • Table 2. GLCM feature parameter values

      View table

      Table 2. GLCM feature parameter values

      AircraftCorrelationASMEntropyContrastHomogeneity
      90°90°90°90°90°
      Helicopter0.00770.00980.820.830.950.8857.4412.500.910.93
      Propeller0.00260.00270.310.294.004.06121.62100.990.600.58
      Turbojet aircraft0.01180.00280.830.770.801.031.75137.680.940.89
    • Table 3. Tamura feature parameter values

      View table

      Table 3. Tamura feature parameter values

      AircraftFcrsFconFlin
      Helicopter35.900.0590.90
      Propeller22.030.2250.64
      Turbojet aircraft22.750.0730.87
    • Table 4. Simulation parameters of five turbojet aircrafts (T), eight propeller aircrafts (P) and nine helicopters (H)

      View table

      Table 4. Simulation parameters of five turbojet aircrafts (T), eight propeller aircrafts (P) and nine helicopters (H)

      CategoryRotating speed /(r/min)L1 /mL2 /mNumber of bladeCategoryRotating speed /(r/min)L1 /mL2 /mNumber of blade
      H-1394.005.6402P-31150.00.231.6754
      H-2265.007.8004P-41800.00.101.0655
      H-3394.005.3453P-5800.00.492.3504
      H-4265.508.1504P-61380.00.281.9056
      H-5185.0010.6505P-72180.00.170.9152
      H-6324.007.3152P-81690.00.231.1803
      H-7205.009.4506T-13520.00.381.10038
      H-8383.005.5004T-28615.00.180.51027
      H-9400.004.8753T-33000.00.301.00030
      P-1950.00.281.9056T-45000.00.200.60033
      P-21650.00.121.1505T-54000.00.240.80042
    Tools

    Get Citation

    Copy Citation Text

    Yunpeng Wang, Yihua Hu, Wuhu Lei, Liren Guo. Aircraft Target Classification Method Based on Texture Feature of Laser Echo Time-Frequency Image[J]. Acta Optica Sinica, 2017, 37(11): 1128004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 8, 2017

    Accepted: --

    Published Online: Sep. 7, 2018

    The Author Email: Hu Yihua (skl_hyh@163.com)

    DOI:10.3788/AOS201737.1128004

    Topics