Journal of Optoelectronics · Laser, Volume. 36, Issue 2, 130(2025)

Aircraft blade surface defect detection based on deep neural networks

SU Baohua1, ZHANG Yinlong2、*, ZHANG Nan1, and FENG Xuan3
Author Affiliations
  • 1Inspection and Testing Centering, Shenyang Liming Aero-Engine (Group), Corporation LTD. , Shenyang, Liaoning 110043, China
  • 2Department of Network and Control System, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China
  • 3College of Information Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
  • show less
    References(13)

    [1] [1] ZHAO B, XIE L, LI H, et al. Reliability analysis of aero-engine compressor rotor system considering cruise characteristics[J]. IEEE Transactions on Reliability, 2019, 69(1):245-259.

    [2] [2] LI Z, MIHAYLOVA L S, ISUPOVA O, et al. Autonomous flame detection in videos with a Dirichlet process Gaussian mixture color model[J]. IEEE Transactions on Industrial Informatics, 2017, 14(3):1146-1154.

    [3] [3] LI D, LI Y, XIE Q, et al. Tiny defect detection in high-resolution aero-engine blade images via a coarse-to-fine framework[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-12.

    [4] [4] SHANG H, WU J, SUN C, et al. Global prior transformer network in intelligent borescope inspection for surface damage detection of aero-engine blade[J]. IEEE Transactions on Industrial Informatics, 2022, 19(8):8865-8877. .

    [5] [5] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2023-11-10]. https://arxiv.org/abs/1804.02767.

    [6] [6] DONG H, SONG K, HE Y, et al. PGA-Net: Pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2019, 16(12):7448-7458.

    [7] [7] YU J, JIANG Y, WANG Z, et al. UnitBox: An advanced object detection network[C]//24th ACM international Conference on Multimedia, October 15-19, 2016, Amsterdam, The Netherland. New York: ACM, 2016:516-520.

    [8] [8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New York: IEEE, 2017:2980-2988.

    [11] [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Computer Vision-ECCV 2016:14th European Conference, October 11-14, 2016, Amsterdam, The Netherlands. Cham: Springer International Publishing, 2016:21-37.

    [12] [12] GUO G, ZHANG Z. Road damage detection algorithm for improved YOLOv5[J]. Scientific Reports, 2022, 12(1):15523.

    [13] [13] GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015:1440-1448.

    [14] [14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 17-24, 2023. Vancouver, BC, Canada. New York: IEEE, 2023:7464-7475.

    [15] [15] FAROOQ J, MUAZ M, KHAN JADOON K, et al. An improved YOLOv8 for foreign object debris detection with optimized architecture for small objects[J]. Multimedia Tools and Applications, 2024, 83(21):60921-60947.

    Tools

    Get Citation

    Copy Citation Text

    SU Baohua, ZHANG Yinlong, ZHANG Nan, FENG Xuan. Aircraft blade surface defect detection based on deep neural networks[J]. Journal of Optoelectronics · Laser, 2025, 36(2): 130

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 10, 2023

    Accepted: Jan. 23, 2025

    Published Online: Jan. 23, 2025

    The Author Email: ZHANG Yinlong (zhangyinlong@sia.cn)

    DOI:10.16136/j.joel.2025.02.0586

    Topics