Chinese Journal of Lasers, Volume. 50, Issue 15, 1507301(2023)

Frontiers of Implantable Multimodal Neural Interfaces

Mingliang Xu1,2, Fangyuan Li1,3, Yueqi Liu1,2, Jinhui Zhang1,2, Yazhou Shi1,2, and Fei He1,4、*
Author Affiliations
  • 1Innovation and Integration Center of New Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    References(290)

    [1] Insel T R, Landis S C, Collins F S. The NIH Brain initiative[J]. Science, 340, 687-688(2013).

    [2] Markram H. The blue brain project[J]. Nature Reviews Neuroscience, 7, 153-160(2006).

    [3] Rajasethupathy P, Ferenczi E, Deisseroth K. Targeting neural circuits[J]. Cell, 165, 524-534(2016).

    [5] Gooch C L, Pracht E, Borenstein A R. The burden of neurological disease in the United States: a summary report and call to action[J]. Annals of Neurology, 81, 479-484(2017).

    [6] Perlmutter J S, Mink J W. Deep brain stimulation[J]. Annual Review of Neuroscience, 29, 229-257(2006).

    [7] Kringelbach M L, Jenkinson N, Owen S L F et al. Translational principles of deep brain stimulation[J]. Nature Reviews Neuroscience, 8, 623-635(2007).

    [8] Mayberg H S, Lozano A M, Voon V et al. Deep brain stimulation for treatment-resistant depression[J]. Neuron, 45, 651-660(2005).

    [9] Lozano A M, Lipsman N, Bergman H et al. Deep brain stimulation: current challenges and future directions[J]. Nature Reviews Neurology, 15, 148-160(2019).

    [10] Krauss J K, Lipsman N, Aziz T et al. Technology of deep brain stimulation: current status and future directions[J]. Nature Reviews Neurology, 17, 75-87(2021).

    [11] Kandel E R, Schwartz J H, Jessell T M et al[M]. Principles of neural science(2000).

    [12] Hong G S, Lieber C M. Novel electrode technologies for neural recordings[J]. Nature Reviews Neuroscience, 20, 330-345(2019).

    [13] Chen R, Li Y C, Cai J M et al. Atomic level deposition to extend Moore's law and beyond[J]. International Journal of Extreme Manufacturing, 2, 022002(2020).

    [14] Yu H Y, Zhang Q M, Chen X et al. Three-dimensional direct laser writing of biomimetic neuron interfaces in the era of artificial intelligence: principles, materials, and applications[J]. Advanced Photonics, 4, 034002(2022).

    [15] Chen Y Q, Shu Z W, Zhang S et al. Sub-10 nm fabrication: methods and applications[J]. International Journal of Extreme Manufacturing, 3, 032002(2021).

    [16] Someya T, Bao Z N, Malliaras G G. The rise of plastic bioelectronics[J]. Nature, 540, 379-385(2016).

    [17] Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies[J]. Nature Reviews Materials, 2, 1-16(2017).

    [18] Patel S R, Lieber C M. Precision electronic medicine in the brain[J]. Nature Biotechnology, 37, 1007-1012(2019).

    [19] Song E M, Li J H, Won S M et al. Materials for flexible bioelectronic systems as chronic neural interfaces[J]. Nature Materials, 19, 590-603(2020).

    [20] He F, Lycke R, Ganji M et al. Ultraflexible neural electrodes for long-lasting intracortical recording[J]. iScience, 23, 101387(2020).

    [21] Urai A E, Doiron B, Leifer A M et al. Large-scale neural recordings call for new insights to link brain and behavior[J]. Nature Neuroscience, 25, 11-19(2022).

    [22] Rivnay J, Wang H L, Fenno L et al. Next-generation probes, particles, and proteins for neural interfacing[J]. Science Advances, 3, e1601649(2017).

    [23] Frank J A, Antonini M J, Anikeeva P. Next-generation interfaces for studying neural function[J]. Nature Biotechnology, 37, 1013-1023(2019).

    [24] Feiner R, Dvir T. Tissue-electronics interfaces: from implantable devices to engineered tissues[J]. Nature Reviews Materials, 3, 1-16(2018).

    [25] Salatino J W, Ludwig K A, Kozai T D Y et al. Glial responses to implanted electrodes in the brain[J]. Nature Biomedical Engineering, 1, 862-877(2017).

    [26] Vázquez-Guardado A, Yang Y Y, Bandodkar A J et al. Recent advances in neurotechnologies with broad potential for neuroscience research[J]. Nature Neuroscience, 23, 1522-1536(2020).

    [27] Tian H H, Xu K, Zou L et al. Multimodal neural probes for combined optogenetics and electrophysiology[J]. iScience, 25, 103612(2022).

    [28] Fang Y. Neural interfaces[J]. Acta Physico-Chimica Sinica, 36, 2009081(2020).

    [29] Liu Y, Duan X J. Carbon-based nanomaterials for neural electrode technology[J]. Acta Physico-Chimica Sinica, 36, 2007066(2020).

    [30] Shi Z, Li L Z, Zhao Y et al. Implantable optoelectronic devices and systems for biomedical application[J]. Chinese Journal of Lasers, 45, 0207001(2018).

    [31] Wang Y F, Zheng Y, Zhu Y et al. Key technologies and progress of precision optogenetics[J]. Laser & Optoelectronics Progress, 59, 0800001(2022).

    [32] Liu R, Li Z Y, Marvin J S et al. Direct wavefront sensing enables functional imaging of infragranular axons and spines[J]. Nature Methods, 16, 615-618(2019).

    [33] Adesnik H, Abdeladim L. Probing neural codes with two-photon holographic optogenetics[J]. Nature Neuroscience, 24, 1356-1366(2021).

    [34] Zhang Z H, Russell L E, Packer A M et al. Closed-loop all-optical interrogation of neural circuits in vivo[J]. Nature Methods, 15, 1037-1040(2018).

    [35] He F, Sullender C T, Zhu H L et al. Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes[J]. Science Advances, 6, eaba1933(2020).

    [36] Zou L, Tian H H, Guan S L et al. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology[J]. Nature Communications, 12, 1-9(2021).

    [37] Grienberger C, Giovannucci A, Zeiger W et al. Two-photon calcium imaging of neuronal activity[J]. Nature Reviews Methods Primers, 2, 67(2022).

    [38] Cho Y U, Lim S L, Hong J H et al. Transparent neural implantable devices: a comprehensive review of challenges and progress[J]. Npj Flexible Electronics, 6, 1-18(2022).

    [39] Park Y, Park S Y, Eom K. Current review of optical neural interfaces for clinical applications[J]. Micromachines, 12, 925(2021).

    [40] Cohen L B, Salzberg B M, Grinvald A. Optical methods for monitoring neuron activity[J]. Annual Review of Neuroscience, 1, 171-182(1978).

    [41] Abdelfattah A S, Kawashima T, Singh A et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging[J]. Science, 365, 699-704(2019).

    [42] Piatkevich K D, Bensussen S, Tseng H A et al. Population imaging of neural activity in awake behaving mice[J]. Nature, 574, 413-417(2019).

    [43] Villette V, Chavarha M, Dimov I K et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice[J]. Cell, 179, 1590-1608(2019).

    [44] Kannan M, Vasan G, Huang C et al. Fast, in vivo voltage imaging using a red fluorescent indicator[J]. Nature Methods, 15, 1108-1116(2018).

    [45] Inoue M. Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo[J]. Neuroscience Research, 169, 2-8(2021).

    [46] Barson D, Hamodi A S, Shen X L et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits[J]. Nature Methods, 17, 107-113(2020).

    [47] Lohr C, Beiersdorfer A, Fischer T et al. Using genetically encoded calcium indicators to study astrocyte physiology: a field guide[J]. Frontiers in Cellular Neuroscience, 15, 690147(2021).

    [48] Stepnoski R A, LaPorta A, Raccuia-Behling F et al. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering[J]. Proceedings of the National Academy of Sciences of the United States of America, 88, 9382-9386(1991).

    [49] Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. NeuroImage, 63, 921-935(2012).

    [50] Wu Z F, Lin D Y, Li Y L. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators[J]. Nature Reviews Neuroscience, 23, 257-274(2022).

    [51] Choe M, Titov D V. Genetically encoded tools for measuring and manipulating metabolism[J]. Nature Chemical Biology, 18, 451-460(2022).

    [52] Day-Cooney J, Dalangin R, Zhong H N et al. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo[J]. Journal of Neurochemistry, 164, 284-308(2023).

    [53] Dong C Y, Zheng Y, Long-Iyer K et al. Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors[J]. Annual Review of Neuroscience, 45, 273-294(2022).

    [54] Berridge M J, Bootman M D, Roderick H L. Calcium signalling: dynamics, homeostasis and remodelling[J]. Nature Reviews Molecular Cell Biology, 4, 517-529(2003).

    [55] Grynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties[J]. Journal of Biological Chemistry, 260, 3440-3450(1985).

    [56] Tsien R Y. A non-disruptive technique for loading calcium buffers and indicators into cells[J]. Nature, 290, 527-528(1981).

    [57] Ohki K, Chung S, Ch'ng Y H et al. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex[J]. Nature, 433, 597-603(2005).

    [58] Takano T, Han X N, Deane R et al. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease[J]. Annals of the New York Academy of Sciences, 1097, 40-50(2007).

    [59] Miyawaki A, Llopis J, Heim R et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin[J]. Nature, 388, 882-887(1997).

    [60] Baird G S, Zacharias D A, Tsien R Y. Circular permutation and receptor insertion within green fluorescent proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241-11246(1999).

    [61] Tian L, Hires S A, Mao T Y et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators[J]. Nature Methods, 6, 875-881(2009).

    [63] Kim T H, Schnitzer M J. Fluorescence imaging of large-scale neural ensemble dynamics[J]. Cell, 185, 9-41(2022).

    [64] Zhao Y X, Araki S, Wu J H et al. An expanded palette of genetically encoded Ca²⁺ indicators[J]. Science, 333, 1888-1891(2011).

    [65] Qian Y, Cosio D M O, Piatkevich K D et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging[J]. PLoS Biology, 18, e3000965(2020).

    [66] Qian Y, Piatkevich K D, Mc Larney B et al. A genetically encoded near-infrared fluorescent calcium ion indicator[J]. Nature Methods, 16, 171-174(2019).

    [68] Shemetov A A, Monakhov M V, Zhang Q R et al. A near-infrared genetically encoded calcium indicator for in vivo imaging[J]. Nature Biotechnology, 39, 368-377(2021).

    [69] Shcherbakova D M. Near-infrared and far-red genetically encoded indicators of neuronal activity[J]. Journal of Neuroscience Methods, 362, 109314(2021).

    [70] Chen T W, Wardill T J, Sun Y et al. Ultrasensitive fluorescent proteins for imaging neuronal activity[J]. Nature, 499, 295-300(2013).

    [71] Siegel M S, Isacoff E Y. A genetically encoded optical probe of membrane voltage[J]. Neuron, 19, 735-741(1997).

    [72] Madhusoodanan J. Genetic light bulbs illuminate the brain[J]. Nature, 574, 437-439(2019).

    [73] Knöpfel T. Genetically encoded optical indicators for the analysis of neuronal circuits[J]. Nature Reviews Neuroscience, 13, 687-700(2012).

    [74] Knöpfel T, Song C C. Optical voltage imaging in neurons: moving from technology development to practical tool[J]. Nature Reviews Neuroscience, 20, 719-727(2019).

    [75] Emiliani V, Entcheva E, Hedrich R et al. Optogenetics for light control of biological systems[J]. Nature Reviews Methods Primers, 2, 55(2022).

    [76] Adam Y, Kim J J, Lou S et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics[J]. Nature, 569, 413-417(2019).

    [77] Fan L Z, Kheifets S, Böhm U L et al. All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1[J]. Cell, 180, 521-535(2020).

    [78] Lin M Z, Schnitzer M J. Genetically encoded indicators of neuronal activity[J]. Nature Neuroscience, 19, 1142-1153(2016).

    [79] Pal A, Tian L. Imaging voltage and brain chemistry with genetically encoded sensors and modulators[J]. Current Opinion in Chemical Biology, 57, 166-176(2020).

    [80] Panzera L C, Hoppa M B. Genetically encoded voltage indicators are illuminating subcellular physiology of the axon[J]. Frontiers in Cellular Neuroscience, 13, 52(2019).

    [81] Wang W J, Kim C K, Ting A Y. Molecular tools for imaging and recording neuronal activity[J]. Nature Chemical Biology, 15, 101-110(2019).

    [82] Cosco E D, Arús B A, Spearman A L et al. Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection[J]. Journal of the American Chemical Society, 143, 6836-6846(2021).

    [83] Matikonda S S, Ivanic J, Gomez M et al. Core remodeling leads to long wavelength fluoro-coumarins[J]. Chemical Science, 11, 7302-7307(2020).

    [84] Cornejo V H, Ofer N, Yuste R. Voltage compartmentalization in dendritic spines in vivo[J]. Science, 375, 82-86(2022).

    [85] Tian H, Davis H C, Wong-Campos J D et al. Video-based pooled screening yields improved far-red genetically encoded voltage indicators[J]. Nature Methods, 1-13(2023).

    [86] Wang M J, Da Y F, Tian Y. Fluorescent proteins and genetically encoded biosensors[J]. Chemical Society Reviews, 52, 1189-1214(2023).

    [87] Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics[J]. Annual Review of Neuroscience, 34, 389-412(2011).

    [88] Nagel G, Szellas T, Huhn W et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940-13945(2003).

    [89] Nagel G, Ollig D, Fuhrmann M et al. Channelrhodopsin-1: a light-gated proton channel in green algae[J]. Science, 296, 2395-2398(2002).

    [90] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [91] Petreanu L, Huber D, Sobczyk A et al. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections[J]. Nature Neuroscience, 10, 663-668(2007).

    [92] Lin D Y, Boyle M P, Dollar P et al. Functional identification of an aggression locus in the mouse hypothalamus[J]. Nature, 470, 221-226(2011).

    [93] Paz J T, Davidson T J, Frechette E S et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury[J]. Nature Neuroscience, 16, 64-70(2013).

    [94] Busskamp V, Duebel J, Balya D et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[J]. Science, 329, 413-417(2010).

    [95] Sahel J A, Boulanger-Scemama E, Pagot C et al. Partial recovery of visual function in a blind patient after optogenetic therapy[J]. Nature Medicine, 27, 1223-1229(2021).

    [96] Busskamp V, Picaud S, Sahel J A et al. Optogenetic therapy for retinitis pigmentosa[J]. Gene Therapy, 19, 169-175(2012).

    [97] Wietek J, Wiegert J S, Adeishvili N et al. Conversion of channelrhodopsin into a light-gated chloride channel[J]. Science, 344, 409-412(2014).

    [98] Lin J Y, Knutsen P M, Muller A et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 16, 1499-1508(2013).

    [99] Wietek J, Rodriguez-Rozada S, Tutas J et al. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior[J]. Scientific Reports, 7, 1-18(2017).

    [100] Marshel J H, Kim Y S, Machado T A et al. Cortical layer-specific critical dynamics triggering perception[J]. Science, 365, eaaw5202(2019).

    [101] Klapoetke N C, Murata Y, Kim S S et al. Independent optical excitation of distinct neural populations[J]. Nature Methods, 11, 338-346(2014).

    [102] Mager T, Lopez de la Morena D, Senn V et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics[J]. Nature Communications, 9, 1-14(2018).

    [103] Lehtinen K, Nokia M S, Takala H. Red light optogenetics in neuroscience[J]. Frontiers in Cellular Neuroscience, 15, 778900(2022).

    [104] Attwell D, Buchan A M, Charpak S et al. Glial and neuronal control of brain blood flow[J]. Nature, 468, 232-243(2010).

    [105] Muoio V, Persson P B, Sendeski M M. The neurovascular unit - concept review[J]. Acta Physiologica, 210, 790-798(2014).

    [106] Kazmi S M, Richards L M, Schrandt C J et al. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow[J]. Journal of Cerebral Blood Flow and Metabolism, 35, 1076-1084(2015).

    [107] Li C X, Chen W L, Jiang J Y et al. Laser speckle contrast imaging on in vivo blood flow: a review[J]. Chinese Journal of Lasers, 45, 0207006(2018).

    [108] Glover G H. Overview of functional magnetic resonance imaging[J]. Neurosurgery Clinics of North America, 22, 133-139(2011).

    [109] Kim T N, Goodwill P W, Chen Y N et al. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals[J]. PLoS One, 7, e38590(2012).

    [110] Meng G H, Zhong J, Zhang Q R et al. Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117346119(2022).

    [111] Lecoq J, Parpaleix A, Roussakis E et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels[J]. Nature Medicine, 17, 893-898(2011).

    [112] Drexler W, Fujimoto J G. Optical coherence tomography imaging: technology and applications[M]. Optical coherence tomography, 1685-1735(2015).

    [113] Baran U, Wang R K. Review of optical coherence tomography based angiography in neuroscience[J]. Neurophotonics, 3, 010902(2016).

    [114] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [115] Ma Y, Shaik M A, Kim S H et al. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371, 20150360(2016).

    [116] Fantini S, Frederick B, Sassaroli A. Perspective: prospects of non-invasive sensing of the human brain with diffuse optical imaging[J]. APL Photonics, 3, 110901(2018).

    [117] Juavinett A L, Nauhaus I, Garrett M E et al. Automated identification of mouse visual areas with intrinsic signal imaging[J]. Nature Protocols, 12, 32-43(2017).

    [118] Nakamichi Y, Okubo K, Sato T et al. Optical intrinsic signal imaging with optogenetics reveals functional cortico-cortical connectivity at the columnar level in living macaques[J]. Scientific Reports, 9, 6466(2019).

    [119] Chen S B, Li P C, Luo W H et al. Time-varying spreading depression waves in rat cortex revealed by optical intrinsic signal imaging[J]. Neuroscience Letters, 396, 132-136(2006).

    [120] Long X Y, Tian C. Biomedical photoacoustic microscopy: advances in technology and applications[J]. Chinese Journal of Lasers, 47, 0207016(2020).

    [121] Wu J L, Ji N, Tsia K K. Speed scaling in multiphoton fluorescence microscopy[J]. Nature Photonics, 15, 800-812(2021).

    [122] Yang W J, Yuste R. In vivo imaging of neural activity[J]. Nature Methods, 14, 349-359(2017).

    [123] Cramer S W, Carter R E, Aronson J D et al. Through the looking glass: a review of cranial window technology for optical access to the brain[J]. Journal of Neuroscience Methods, 354, 109100(2021).

    [124] Huang S H, Irawati N, Chien Y F et al. Optical volumetric brain imaging: speed, depth, and resolution enhancement[J]. Journal of Physics D: Applied Physics, 54, 323002(2021).

    [125] Scheele C L G J, Herrmann D, Yamashita E et al. Multiphoton intravital microscopy of rodents[J]. Nature Reviews Methods Primers, 2, 89(2022).

    [126] Wang S W, Lei M. Near infrared-Ⅱ excited multiphoton fluorescence imaging[J]. Laser & Optoelectronics Progress, 59, 0617002(2022).

    [127] Jennings J H, Kim C K, Marshel J H et al. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour[J]. Nature, 565, 645-649(2019).

    [128] He F, Sun Y C, Jin Y F et al. Longitudinal neural and vascular recovery following ultraflexible neural electrode implantation in aged mice[J]. Biomaterials, 291, 121905(2022).

    [129] Skocek O, Nöbauer T, Weilguny L et al. High-speed volumetric imaging of neuronal activity in freely moving rodents[J]. Nature Methods, 15, 429-432(2018).

    [130] Dussaux C, Szabo V, Chastagnier Y et al. Fast confocal fluorescence imaging in freely behaving mice[J]. Scientific Reports, 8, 1-14(2018).

    [131] Fan J T, Suo J L, Wu J M et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).

    [132] Yu C H, Stirman J N, Yu Y Y et al. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry[J]. Nature Communications, 12, 1-8(2021).

    [133] Voleti V, Patel K B, Li W Z et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0[J]. Nature Methods, 16, 1054-1062(2019).

    [134] Bouchard M B, Voleti V, Mendes C S et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms[J]. Nature Photonics, 9, 113-119(2015).

    [135] Keller P J, Schmidt A D, Wittbrodt J et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 322, 1065-1069(2008).

    [136] Stelzer E H K. Light-sheet fluorescence microscopy for quantitative biology[J]. Nature Methods, 12, 23-26(2015).

    [137] Levoy M, Ng R, Adams A et al. Light field microscopy[C], 924-934(2006).

    [138] Prevedel R, Yoon Y G, Hoffmann M et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J]. Nature Methods, 11, 727-730(2014).

    [139] Wu J M, Lu Z, Jiang D et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell, 184, 3318-3332(2021).

    [140] Lu Z, Cai Y Y, Nie Y X et al. A practical guide to scanning light-field microscopy with digital adaptive optics[J]. Nature Protocols, 17, 1953-1979(2022).

    [141] Ghosh K K, Burns L D, Cocker E D et al. Miniaturized integration of a fluorescence microscope[J]. Nature Methods, 8, 871-878(2011).

    [142] Zong W J, Wu R L, Li M L et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely-behaving mice[J]. Nature Methods, 14, 713-719(2017).

    [143] Trevathan J K, Asp A J, Nicolai E N et al. Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures[J]. Journal of Neural Engineering, 18, 026008(2021).

    [144] Xue Y J, Davison I G, Boas D A et al. Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope[J]. Science Advances, 6, eabb7508(2020).

    [145] Zong W J, Obenhaus H A, Skytøen E R et al. Large-scale two-photon calcium imaging in freely moving mice[J]. Cell, 185, 1240-1256(2022).

    [146] Accanto N, Blot F G C, Lorca-Cámara A et al. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice[J]. Neuron, 111, 176-189(2023).

    [147] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [148] Helmchen F, Fee M S, Tank D W et al. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals[J]. Neuron, 31, 903-912(2001).

    [149] Zong W J, Wu R L, Chen S Y et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nature Methods, 18, 46-49(2021).

    [150] Klioutchnikov A, Wallace D J, Sawinski J et al. A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice[J]. Nature Methods, 1-7(2022).

    [151] Guan H H, Li D W, Park H C et al. Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice[J]. Nature Communications, 13, 1-9(2022).

    [152] Sun J W, Wu J C, Wu S et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope[J]. Light: Science & Applications, 11, 1-10(2022).

    [153] Park J, Brady D J, Zheng G A et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 3, 044001(2021).

    [154] Nöbauer T, Skocek O, Pernía-Andrade A J et al. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy[J]. Nature Methods, 14, 811-818(2017).

    [155] Xue Y J, Yang Q W, Hu G R et al. Deep-learning-augmented computational miniature mesoscope[J]. Optica, 9, 1009-1021(2022).

    [156] Adams J K, Boominathan V, Avants B W et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope[J]. Science Advances, 3, e1701548(2017).

    [157] Adams J K, Yan D, Wu J M et al. In vivo lensless microscopy via a phase mask generating diffraction patterns with high-contrast contours[J]. Nature Biomedical Engineering, 6, 617-628(2022).

    [158] Boominathan V, Robinson J T, Waller L et al. Recent advances in lensless imaging[J]. Optica, 9, 1-16(2022).

    [159] Hodgkin A L, Huxley A F. Action potentials recorded from inside a nerve fibre[J]. Nature, 144, 710-711(1939).

    [160] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 117, 500-544(1952).

    [161] Gesteland R C, Howland B, Lettvin J Y et al. Comments on microelectrodes[J]. Proceedings of the The Institute of Radio Engineers, 47, 1856-1862(1959).

    [162] Ejserholm F[M]. Development of a polymer based neural probe-How to record intracortical neural activity while minimizing the tissue response(2016).

    [163] Weltman A, Yoo J, Meng E. Flexible, penetrating brain probes enabled by advances in polymer microfabrication[J]. Micromachines, 7, 180(2016).

    [164] Wise K D, Angell J B, Starr A. An integrated-circuit approach to extracellular microelectrodes[J]. IEEE Transactions on Bio-Medical Engineering, 17, 238-247(1970).

    [165] Maynard E M, Nordhausen C T, Normann R A. The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces[J]. Electroencephalography and Clinical Neurophysiology, 102, 228-239(1997).

    [166] Jun J J, Steinmetz N A, Siegle J H et al. Fully integrated silicon probes for high-density recording of neural activity[J]. Nature, 551, 232-236(2017).

    [167] Khodagholy D, Gelinas J N, Thesen T et al. NeuroGrid: recording action potentials from the surface of the brain[J]. Nature Neuroscience, 18, 310-315(2015).

    [168] Minev I R, Musienko P, Hirsch A et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 347, 159-163(2015).

    [169] Liu J, Fu T M, Cheng Z G et al. Syringe-injectable electronics[J]. Nature Nanotechnology, 10, 629-636(2015).

    [170] Yang X, Zhou T, Zwang T J et al. Bioinspired neuron-like electronics[J]. Nature Materials, 18, 510-517(2019).

    [171] Luan L, Wei X L, Zhao Z T et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration[J]. Science Advances, 3, e1601966(2017).

    [172] Guan S, Wang J, Gu X et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings[J]. Science Advances, 5, eaav2842(2019).

    [173] Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels[J]. Journal of Medical Internet Research, 21, e16194(2019).

    [174] Zhao Z T, Zhu H L, Li X et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents[J]. Nature Biomedical Engineering, 1-13(2022).

    [175] Buzsáki G, Anastassiou C A, Koch C. The origin of extracellular fields and currents: EEG, ECoG, LFP and spikes[J]. Nature Reviews Neuroscience, 13, 407-420(2012).

    [176] Galvani L. De viribus electricitatis in motu musculari commentarius[J]. Commentarii de Bononiensi Scientiarum et Artium Instituto Atque Academia, 7, 363-418(1791).

    [177] Woods G A, Rommelfanger N J, Hong G S. Bioinspired materials for in vivo bioelectronic neural interfaces[J]. Matter, 3, 1087-1113(2020).

    [178] Gray C M, Maldonado P E, Wilson M et al. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex[J]. Journal of Neuroscience Methods, 63, 43-54(1995).

    [179] Abidian M R, Martin D C. Multifunctional nanobiomaterials for neural interfaces[J]. Advanced Functional Materials, 19, 573-585(2009).

    [180] Steinmetz N A, Aydin C, Lebedeva A et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings[J]. Science, 372, eabf4588(2021).

    [181] Chiang C H, Won S M, Orsborn A L et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates[J]. Science Translational Medicine, 12, eaay4682(2020).

    [182] Xie C, Liu J, Fu T M et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes[J]. Nature Materials, 14, 1286-1292(2015).

    [183] Spix T A, Nanivadekar S, Toong N et al. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation[J]. Science, 374, 201-206(2021).

    [184] Abdelfattah A, Ahuja S, Akkin T et al. Neurophotonic tools for microscopic measurements and manipulation: status report[J]. Neurophotonics, 9, 013001(2022).

    [185] Guo Q C, Zhou J F, Feng Q R et al. Multi-channel fiber photometry for population neuronal activity recording[J]. Biomedical Optics Express, 6, 3919-3931(2015).

    [186] Aravanis A M, Wang L P, Zhang F et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 4, S143-S156(2007).

    [187] Li Y M, Wang Y, Chen H et al. Development of implantable optrode devices[J]. Acta Physico-Chimica Sinica, 36, 1912054(2020).

    [188] Pashaie R, Falk R. Single optical fiber probe for fluorescence detection and optogenetic stimulation[J]. IEEE Transactions on Bio-Medical Engineering, 60, 268-280(2013).

    [189] Dubois A, Chiang C C, Smekens F et al. Optical and thermal simulations for the design of optodes for minimally invasive optogenetics stimulation or photomodulation of deep and large cortical areas in non-human primate brain[J]. Journal of Neural Engineering, 15, 065004(2018).

    [190] Szabo V, Ventalon C, De Sars V et al. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope[J]. Neuron, 84, 1157-1169(2014).

    [191] Kim C K, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience[J]. Nature Reviews Neuroscience, 18, 222-235(2017).

    [192] Schlegel F, Sych Y, Schroeter A et al. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice[J]. Nature Protocols, 13, 840-855(2018).

    [193] Tsakas A, Tselios C, Ampeliotis D et al. Review of optical fiber technologies for optogenetics[J]. Results in Optics, 5, 100168(2021).

    [194] Fu R X, Luo W H, Nazempour R et al. Implantable and biodegradable poly(l-lactic acid) fibers for optical neural interfaces[J]. Advanced Optical Materials, 6, 1700941(2018).

    [195] Pisanello F, Sileo L, Oldenburg I et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics[J]. Neuron, 82, 1245-1254(2014).

    [196] Pisanello F, Mandelbaum G, Pisanello M et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber[J]. Nature Neuroscience, 20, 1180-1188(2017).

    [197] Pisano F, Pisanello M, Lee S J et al. Depth-resolved fiber photometry with a single tapered optical fiber implant[J]. Nature Methods, 16, 1185-1192(2019).

    [198] Moreaux L C, Yatsenko D, Sacher W D et al. Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity-at depth and in real time[J]. Neuron, 108, 66-92(2020).

    [199] Parbrook P J, Corbett B, Han J et al. Micro-light emitting diode: from chips to applications[J]. Laser & Photonics Reviews, 15, 2000133(2021).

    [200] Wu F, Stark E, Ku P C et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 88, 1136-1148(2015).

    [201] Kim T I, McCall J G, Jung Y H et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 340, 211-216(2013).

    [202] Son Y, Lee H J, Kim J et al. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays[J]. Scientific Reports, 5, 1-11(2015).

    [203] Canales A, Jia X T, Froriep U P et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 33, 277-284(2015).

    [204] Spagnolo B, Balena A, Peixoto R T et al. Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts[J]. Nature Materials, 21, 826-835(2022).

    [205] Lu L Y, Gutruf P, Xia L et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, E1374-E1383(2018).

    [206] Yang Y Y, Wu M Z, Vázquez-Guardado A et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors[J]. Nature Neuroscience, 24, 1035-1045(2021).

    [207] Huang Y X, Cui Y T, Deng H J et al. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities[J]. Nature Biomedical Engineering, 1-13(2022).

    [208] Li L Z, Lu L H, Ren Y Q et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe[J]. Nature Communications, 13, 1-14(2022).

    [209] Cai X, Li L Z, Liu W H et al. A dual-channel optogenetic stimulator selectively modulates distinct defensive behaviors[J]. iScience, 25, 103681(2022).

    [210] Qazi R, Kim C Y, Byun S H et al. Microscale inorganic LED based wireless neural systems for chronic in vivo optogenetics[J]. Frontiers in Neuroscience, 12, 764(2018).

    [211] Park S, Guo Y Y, Jia X T et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [212] Lee W, Kim D, Matsuhisa N et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 10554-10559(2017).

    [213] Kayser L V, Lipomi D J. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS[J]. Advanced Materials, 31, e1806133(2019).

    [214] Michelson N J, Eles J R, Vazquez A L et al. Calcium activation of cortical neurons by continuous electrical stimulation: frequency dependence, temporal fidelity, and activation density[J]. Journal of Neuroscience Research, 97, 620-638(2019).

    [215] Wei X L, Luan L, Zhao Z T et al. Nanofabricated ultraflexible electrode arrays for high-density intracortical recording[J]. Advanced Science, 5, 1700625(2018).

    [216] Liu X, Ren C, Lu Y C et al. Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical-hippocampal interactions[J]. Nature Neuroscience, 24, 886-896(2021).

    [217] Wu X T, Yang X Y, Song L L et al. A modified miniscope system for simultaneous electrophysiology and calcium imaging in vivo[J]. Frontiers in Integrative Neuroscience, 15, 682019(2021).

    [218] Ghanbari L, Carter R E, Rynes M L et al. Cortex-wide neural interfacing via transparent polymer skulls[J]. Nature Communications, 10, 1-13(2019).

    [219] Kim T H, Zhang Y P, Lecoq J et al. Long-term optical access to an estimated one million neurons in the live mouse cortex[J]. Cell Reports, 17, 3385-3394(2016).

    [220] Kozai T D Y, Eles J R, Vazquez A L et al. Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights[J]. Journal of Neuroscience Methods, 258, 46-55(2016).

    [222] Poskanzer K E, Yuste R. Astrocytes regulate cortical state switching in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, E2675-E2684(2016).

    [223] Dunn A K, Bolay H, Moskowitz M A et al. Dynamic imaging of cerebral blood flow using laser speckle[J]. Journal of Cerebral Blood Flow & Metabolism, 21, 195-201(2001).

    [224] McCullough C M, Ramirez-Gordillo D, Hall M et al. GRINtrode: a neural implant for simultaneous two-photon imaging and extracellular electrophysiology in freely moving animals[J]. Neurophotonics, 9, 045009(2022).

    [225] Park D W, Brodnick S K, Ness J P et al. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics[J]. Nature Protocols, 11, 2201-2222(2016).

    [226] Thunemann M, Lu Y C, Liu X et al. Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays[J]. Nature Communications, 9, 1-12(2018).

    [227] Driscoll N, Rosch R E, Murphy B B et al. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale[J]. Communications Biology, 4, 1-14(2021).

    [228] Kuzum D, Takano H, Shim E et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging[J]. Nature Communications, 5, 1-10(2014).

    [229] Park D W, Schendel A A, Mikael S et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications[J]. Nature Communications, 5, 1-11(2014).

    [230] Jang H, Park Y J, Chen X et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 28, 4184-4202(2016).

    [231] Pashaie R, Anikeeva P, Lee J H et al. Optogenetic brain interfaces[J]. IEEE Reviews in Biomedical Engineering, 7, 3-30(2014).

    [232] Richner T J, Baumgartner R, Brodnick S K et al. Patterned optogenetic modulation of neurovascular and metabolic signals[J]. Journal of Cerebral Blood Flow and Metabolism, 35, 140-147(2015).

    [233] Lee J, Ozden I, Song Y K et al. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording[J]. Nature Methods, 12, 1157-1162(2015).

    [234] Wang Y, Zhu C X, Pfattner R et al. A highly stretchable, transparent, and conductive polymer[J]. Science Advances, 3, e1602076(2017).

    [235] Lu H Y, Lorenc E S, Zhu H L et al. Multi-scale neural decoding and analysis[J]. Journal of Neural Engineering, 18, 045013(2021).

    [236] Petersen P C, Siegle J H, Steinmetz N A et al. CellExplorer: a framework for visualizing and characterizing single neurons[J]. Neuron, 109, 3594-3608(2021).

    [237] Dai X C, Zhou W, Gao T et al. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues[J]. Nature Nanotechnology, 11, 776-782(2016).

    [238] Benisty H, Song A, Mishne G et al. Review of data processing of functional optical microscopy for neuroscience[J]. Neurophotonics, 9, 041402(2022).

    [239] Tahir W, Kura S, Zhu J B et al. Anatomical modeling of brain vasculature in two-photon microscopy by generalizable deep learning[J]. BME Frontiers, 2020, 8620932(2020).

    [242] Bao Y J, Soltanian-Zadeh S, Farsiu S et al. Segmentation of neurons from fluorescence calcium recordings beyond real-time[J]. Nature Machine Intelligence, 3, 590-600(2021).

    [243] Lecoq J, Oliver M, Siegle J H et al. Removing independent noise in systems neuroscience data using DeepInterpolation[J]. Nature Methods, 18, 1401-1408(2021).

    [244] Rupprecht P, Carta S, Hoffmann A et al. A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging[J]. Nature Neuroscience, 24, 1324-1337(2021).

    [245] Wang Z Q, Zhu L X, Zhang H et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning[J]. Nature Methods, 18, 551-556(2021).

    [246] Wagner N, Beuttenmueller F, Norlin N et al. Deep learning-enhanced light-field imaging with continuous validation[J]. Nature Methods, 18, 557-563(2021).

    [247] Qiao C, Li D, Guo Y T et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 18, 194-202(2021).

    [248] Chung J E, Magland J F, Barnett A H et al. A fully automated approach to spike sorting[J]. Neuron, 95, 1381-1394(2017).

    [249] Buccino A P, Hurwitz C L, Garcia S et al. SpikeInterface, a unified framework for spike sorting[J]. eLife, 9, e61834(2020).

    [250] Luan L, Robinson J T, Aazhang B et al. Recent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalability[J]. Neuron, 108, 302-321(2020).

    [251] Juergens E, Guettler A, Eckhorn R. Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG[J]. Experimental Brain Research, 129, 247-259(1999).

    [252] Mathis A, Mamidanna P, Cury K M et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning[J]. Nature Neuroscience, 21, 1281-1289(2018).

    [253] Nath T, Mathis A, Chen A C et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors[J]. Nature Protocols, 14, 2152-2176(2019).

    [254] Mathis M W, Mathis A. Deep learning tools for the measurement of animal behavior in neuroscience[J]. Current Opinion in Neurobiology, 60, 1-11(2020).

    [255] Pereira T D, Shaevitz J W, Murthy M. Quantifying behavior to understand the brain[J]. Nature Neuroscience, 23, 1537-1549(2020).

    [256] Kleinfeld D, Luan L, Mitra P P et al. Can one concurrently record electrical spikes from every neuron in a mammalian brain?[J]. Neuron, 103, 1005-1015(2019).

    [257] Abbott J, Ye T Y, Krenek K et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons[J]. Nature Biomedical Engineering, 4, 232-241(2020).

    [258] Schoonover C E, Ohashi S N, Axel R et al. Representational drift in primary olfactory cortex[J]. Nature, 594, 541-546(2021).

    [259] Paulk A C, Kfir Y, Khanna A R et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex[J]. Nature Neuroscience, 25, 252-263(2022).

    [260] Gardner R J, Hermansen E, Pachitariu M et al. Toroidal topology of population activity in grid cells[J]. Nature, 602, 123-128(2022).

    [261] Vöröslakos M, Kim K, Slager N et al. HectoSTAR μLED optoelectrodes for large-scale, high-precision in vivo opto-electrophysiology[J]. Advanced Science, 9, e2105414(2022).

    [262] Chung J E, Sellers K K, Leonard M K et al. High-density single-unit human cortical recordings using the Neuropixels probe[J]. Neuron, 110, 2409-2421(2022).

    [263] Grewe B F, Langer D, Kasper H et al. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision[J]. Nature Methods, 7, 399-405(2010).

    [264] Ducros M, Houssen Y G, Bradley J et al. Encoded multisite two-photon microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 13138-13143(2013).

    [265] Yang W J, Miller J E, Carrillo-Reid L et al. Simultaneous multi-plane imaging of neural circuits[J]. Neuron, 89, 269-284(2016).

    [267] Stirman J N, Smith I T, Kudenov M W et al. Wide field-of-view, multi-region two-photon imaging of neuronal activity in the mammalian brain[J]. Nature Biotechnology, 34, 857-862(2016).

    [268] Nadella K M N S, Roš H, Baragli C et al. Random-access scanning microscopy for 3D imaging in awake behaving animals[J]. Nature Methods, 13, 1001-1004(2016).

    [269] Prevedel R, Verhoef A J, Pernía-Andrade A J et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light[J]. Nature Methods, 13, 1021-1028(2016).

    [270] Lu R, Sun W, Liang Y et al. Video-rate volumetric functional imaging of the brain at synaptic resolution[J]. Nature Neuroscience, 20, 620-628(2017).

    [271] Kazemipour A, Novak O, Flickinger D et al. Kilohertz frame-rate two-photon tomography[J]. Nature Methods, 16, 778-786(2019).

    [272] Demas J, Manley J, Tejera F et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy[J]. Nature Methods, 18, 1103-1111(2021).

    [273] Durand S, Heller G R, Ramirez T K et al. Acute head-fixed recordings in awake mice with multiple Neuropixels probes[J]. Nature Protocols, 18, 424-457(2023).

    [274] Bansal A, Shikha S, Zhang Y. Towards translational optogenetics[J]. Nature Biomedical Engineering, 1-21(2022).

    [275] Okano H. Current status of and perspectives on the application of marmosets in neurobiology[J]. Annual Review of Neuroscience, 44, 27-48(2021).

    [276] Hussey G S, Dziki J L, Badylak S F. Extracellular matrix-based materials for regenerative medicine[J]. Nature Reviews Materials, 3, 159-173(2018).

    [277] Kang S K, Murphy R K J, Hwang S W et al. Bioresorbable silicon electronic sensors for the brain[J]. Nature, 530, 71-76(2016).

    [278] Zaaimi B, Turnbull M, Hazra A et al. Closed-loop optogenetic control of the dynamics of neural activity in non-human Primates[J]. Nature Biomedical Engineering, 1-17(2022).

    [279] Piech D K, Johnson B C, Shen K et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication[J]. Nature Biomedical Engineering, 4, 207-222(2020).

    [280] Won S M, Cai L, Gutruf P et al. Wireless and battery-free technologies for neuroengineering[J]. Nature Biomedical Engineering, 1-19(2021).

    [281] Marx V. Neuroscientists go wireless[J]. Nature Methods, 18, 1150-1154(2021).

    [282] Collins F S, Tabak L A. Policy: NIH plans to enhance reproducibility[J]. Nature, 505, 612-613(2014).

    [283] Li X Y, Zhang G X, Wu J M et al. Reinforcing neuron extraction and spike inference in calcium imaging using deep self-supervised denoising[J]. Nature Methods, 18, 1395-1400(2021).

    [284] Li X Y, Li Y X, Zhou Y L et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit[J]. Nature Biotechnology, 41, 282-292(2023).

    [285] Sun F M, Zeng J Z, Jing M et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice[J]. Cell, 174, 481-496(2018).

    [286] Jing M, Zhang P, Wang G F et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies[J]. Nature Biotechnology, 36, 726-737(2018).

    [287] Feng J S, Zhang C M, Lischinsky J E et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine[J]. Neuron, 102, 745-761(2019).

    [288] Sun F M, Zhou J H, Dai B et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo[J]. Nature Methods, 17, 1156-1166(2020).

    [289] Wan J X, Peng W L, Li X L et al. A genetically encoded sensor for measuring serotonin dynamics[J]. Nature Neuroscience, 24, 746-752(2021).

    [290] Dong A, He K K, Dudok B et al. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo[J]. Nature Biotechnology, 40, 787-798(2022).

    [291] Ngai J. BRAIN 2.0: transforming neuroscience[J]. Cell, 185, 4-8(2022).

    Tools

    Get Citation

    Copy Citation Text

    Mingliang Xu, Fangyuan Li, Yueqi Liu, Jinhui Zhang, Yazhou Shi, Fei He. Frontiers of Implantable Multimodal Neural Interfaces[J]. Chinese Journal of Lasers, 2023, 50(15): 1507301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Neurophotonics and Optical Regulation

    Received: Dec. 5, 2022

    Accepted: Mar. 2, 2023

    Published Online: Jul. 17, 2023

    The Author Email: Fei He (hefei@siom.ac.cn)

    DOI:10.3788/CJL221482

    Topics