Journal of Synthetic Crystals, Volume. 50, Issue 9, 1780(2021)
Epitaxy of Wide Bandgap Semiconductors on Silicon Carbide Substrate
[1] [1] ROSKER M J. The present state of the art of wide-bandgap semiconductors and their future[C]//2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. June 3-5, 2007, Honolulu, HI, USA. IEEE, 2007: 159-162.
[2] [2] ZHANG D G, LI Z H, YANG Q K, et al. Research on epitaxial of 250 nm high quality GaN HEMT based on AlN surface leveling technology[J]. Applied Surface Science, 2020, 509: 145339.
[3] [3] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.
[4] [4] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110.
[5] [5] MISHRA U K, PARIKH P, WU Y F. AlGaN/GaN HEMTs-an overview of device operation and applications[J]. Proceedings of the IEEE, 2002, 90(6): 1022-1031.
[6] [6] CHO L W, LEE B, LEE K, et al. Luminescence properties of InGaN/GaN green light-emitting diodes with Si-doped graded short-period superlattice[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(11): 5648-5652.
[7] [7] Yole.5G: take it or leave it? [EB/OL] (2021-06-18). http://www.yole.fr/2021_press_releases.aspx
[10] [10] SVERDLOV B N, MARTIN G A, MORKO H, et al. Formation of threading defects in GaN wurtzite films grown on nonisomorphic substrates[J]. Applied Physics Letters, 1995, 67(14): 2063-2065.
[11] [11] METCALFE G D, SHEN H, WRABACK M, et al. Enhanced terahertz radiation from high stacking fault density nonpolar GaN[J]. Applied Physics Letters, 2008, 92(24): 241106.
[12] [12] CHAKRABORTY A, HASKELL B A, KELLER S, et al. Demonstration of nonpolarm-plane InGaN/GaN light-emitting diodes on free-standingm-plane GaN substrates[J]. Japanese Journal of Applied Physics, 2005, 44(5): L173-L175.
[13] [13] DAVYDOV V Y, AVERKIEV N S, GONCHARUK I N, et al. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC[J]. Journal of Applied Physics, 1997, 82(10): 5097-5102.
[14] [14] LIN M E, STRITE S, AGARWAL A, et al. GaN grown on hydrogen plasma cleaned 6H-SiC substrates[J]. Applied Physics Letters, 1993, 62(7): 702-704.
[15] [15] LIN M E, SVERDLOV B, ZHOU G L, et al. A comparative study of GaN epilayers grown on sapphire and SiC substrates by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 1993, 62(26): 3479-3481.
[16] [16] CRAVEN M D, CHAKRABORTY A, IMER B, et al. Structural and electrical characterization of a-plane GaN grown on a-plane SiC[J]. Physica Status Solidi (c), 2003(7): 2132-2135.
[17] [17] CRAVEN M D, WU F, CHAKRABORTY A, et al. Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2004, 84(8): 1281-1283.
[18] [18] ZHANG H F, PASKOV P P, KORDINA O, et al. N-polar AlN nucleation layers grown by hot-wall MOCVD on SiC: effects of substrate orientation on the polarity, surface morphology and crystal quality[J]. Physica B: Condensed Matter, 2020, 580: 411819.
[19] [19] KOLESKE D D, HENRY R L, TWIGG M E, et al. Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC[J]. Applied Physics Letters, 2002, 80(23): 4372-4374.
[20] [20] NARANG K, BAG R K, SINGH V K, et al. Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT[J]. Journal of Alloys and Compounds, 2020, 815:152283.
[21] [21] KIM J, PYEON J, JEON M, et al. Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet[J]. Japanese Journal of Applied Physics, 2015, 54(8): 081001.
[22] [22] DENG G Q, ZHANG Y T, YU Y, et al. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of Ⅴ/Ⅲ ratio[J]. Applied Physics Letters, 2018, 112(15): 151607.
[23] [23] WALTEREIT P, BRANDT O, TRAMPERT A, et al. Influence of AlN nucleation layers on growth mode and strain relief of GaN grown on 6H-SiC(0001)[J]. Applied Physics Letters, 1999, 74(24): 3660-3662.
[24] [24] TANAKA S, IWAI S, AOYAGI Y. Reduction of the defect density in GaN films using ultra-thin AlN buffer layers on 6H-SiC[J]. Journal of Crystal Growth, 1997, 170(1/2/3/4): 329-334.
[25] [25] DING G J, GUO L W, XING Z G, et al. Characteristics of GaN grown on 6H-SiC with different AlN buffers[J]. Journal of Semiconductors, 2010, 31(3): 033003.
[26] [26] WARREN WEEKS T, BREMSER M D, AILEY K S, et al. GaN thin films deposited via organometallic vapor phase epitaxy on α(6H)-SiC(0001) using high-temperature monocrystalline AlN buffer layers[J]. Applied Physics Letters, 1995, 67(3): 401-403.
[27] [27] CHO E, MOGILATENKO A, BRUNNER F, et al. Impact of AlN nucleation layer on strain in GaN grown on 4H-SiC substrates[J]. Journal of Crystal Growth, 2013, 371: 45-49.
[28] [28] LI C H, LI Z H, PENG D Q, et al. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy[J]. Journal of Alloys and Compounds, 2020, 838: 155557.
[29] [29] EINFELDT S, REITMEIER Z J, DAVIS R F. Surface morphology and strain of GaN layers grown using 6H-SiC(0 0 0 1) substrates with different buffer layers[J]. Journal of Crystal Growth, 2003, 253(1/2/3/4): 129-141.
[30] [30] MORAN B, WU F, ROMANOV A E, et al. Structural and morphological evolution of GaN grown by metalorganic chemical vapor deposition on SiC substrates using an AlN initial layer[J]. Journal of Crystal Growth, 2004, 273(1/2): 38-47.
[31] [31] CHO Y S, SUN Q, LEE I H, et al. Reduction of stacking fault density in m-plane GaN grown on SiC[J]. Applied Physics Letters, 2008, 93(11): 111904.
[32] [32] CREE. Nitride epitaxy [EB/OL]. (2021-07-15) https://www.wolfspeed.com/products/materials/nitride-epitaxy/.
[33] [33] SARUA A, JI H F, HILTON K P, et al. Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3152-3158.
[34] [34] SMART J A, SCHREMER A T, WEIMANN N G, et al. AlGaN/GaN heterostructures on insulating AlGaN nucleation layers[J]. Applied Physics Letters, 1999, 75(3): 388-390.
[35] [35] LAHRCHE H, LEROUX M, LAGT M, et al. Buffer free direct growth of GaN on 6H-SiC by metalorganic vapor phase epitaxy[J]. Journal of Applied Physics, 1999, 87(1): 577-583.
[36] [36] SUN Z, OHTA A, MIYAZAKI S, et al. The interface analysis of GaN grown on 0° off 6H-SiC with an ultra-thin buffer layer[J]. Japanese Journal of Applied Physics, 2016, 55(1): 010303.
[37] [37] FENG Y X, SUN H R, YANG X L, et al. High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer[J]. Applied Physics Letters, 2021, 118(5): 052104.
[38] [38] YUN F, RESHCHIKOV M A, HE L, et al. Growth of GaN films on porous SiC substrate by molecular-beam epitaxy[J]. Applied Physics Letters, 2002, 81(22): 4142-4144.
[39] [39] NEUDECK P G, POWELL J A, BEHEIM G M, et al. Enlargement of step-free SiC surfaces by homoepitaxial web growth of thin SiC cantilevers[J]. Journal of Applied Physics, 2002, 92(5): 2391-2400.
[40] [40] BASSIM N D, TWIGG M E, EDDY C R, et al. Microstructure of heteroepitaxial GaN grown on mesa-patterned 4H-SiC substrates[J]. Applied Physics Letters, 2004, 84(25): 5216-5218.
[41] [41] SONG S W, LIU Y, LIANG H W, et al. Improvement of quality and strain relaxation of GaN epilayer grown on SiC substrate by in situ SiNx interlayer[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(8): 2923-2927.
[42] [42] DENG G Q, ZHANG Y T, YU Y, et al. Significantly reduced in-plane tensile stress of GaN films grown on SiC substrates by using graded AlGaN buffer and SiNx interlayer[J]. Superlattices and Microstructures, 2018, 122: 74-79.
[43] [43] HUANG X R, BAI J, DUDLEY M, et al. Step-controlled strain relaxation in the vicinal surface epitaxy of nitrides[J]. Physical Review Letters, 2005, 95(8): 086101.
[44] [44] SU C W, WANG T W, WU M C, et al. Fabrication and characterization of GaN HEMTs grown on SiC substrates with different orientations[J]. Solid-State Electronics, 2021, 179: 107980.
[45] [45] RUDZIN'SKI M, JEZIERSKA E, WEYHER J L, et al. Defect formation in GaN grown on vicinal 4H-SiC (0001) substrates[J]. Physica Status Solidi (a), 2007, 204(12): 4230-4240.
[46] [46] PERNOT J, BUSTARRET E, RUDZIN'SKI M, et al. Strain relaxation in GaN grown on vicinal 4H-SiC(0001) substrates[J]. Journal of Applied Physics, 2007, 101(3): 033536.
[47] [47] POWELL A R, ROWLAND L B. SiC materials-progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955.
[48] [48] LA VIA F, CAMARDA M, LA MAGNA A. Mechanisms of growth and defect properties of epitaxial SiC[J]. Applied Physics Reviews, 2014, 1(3): 031301.
[49] [49] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101.
[50] [50] KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2014.
[51] [51] KORDINA O, HALLIN C, HENRY A, et al. Growth of SiC by “hot-wall” CVD and HTCVD[J]. Physica Status Solidi (b), 1997, 202(1): 321-334.
[52] [52] ELLISON A, MAGNUSSON B, HEMMINGSSON C, et al. HTCVD growth of semi-insulating 4H-SiC crystals with low defect density[J]. MRS Online Proceedings Library, 2011, 640(1): 1-11.
[53] [53] ELLISON A, ZHANG J, PETERSON J, et al. High temperature CVD growth of SiC[J]. Materials Science and Engineering: B, 1999, 61/62: 113-120.
[54] [54] MYERS R L, SHISHKIN Y, KORDINA O, et al. High growth rates (>30 μm/h) of 4H-SiC epitaxial layers using a horizontal hot-wall CVD reactor[J]. Journal of Crystal Growth, 2005, 285(4): 486-490.
[55] [55] CRIPPA D, VALENTE G L, RUGGIERO A, et al. New achievements on CVD based methods for SiC epitaxial growth[J]. Materials Science Forum, 2005, 483/484/485: 67-72.
[56] [56] VIA F L, GALVAGNO G, ROCCAFORTE F, et al. High growth rate process in a SiC horizontal CVD reactor using HCl[J]. Microelectronic Engineering, 2006, 83(1): 48-50.
[57] [57] LA VIA F, GALVAGNO G, FIRRINCIELI A, et al. Epitaxial layers grown with HCl addition: a comparison with the standard process[J]. Materials Science Forum, 2006, 527/528/529: 163-166.
[58] [58] LA VIA F, GALVAGNO G, FOTI G, et al. 4H-SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515.
[59] [59] DHANARAJ G, DUDLEY M, CHEN Y, et al. Epitaxial growth and characterization of silicon carbide films[J]. Journal of Crystal Growth, 2006, 287(2): 344-348.
[60] [60] TU R, ZHENG D H, CHENG H, et al. Effect of CH4/SiCl4 ratio on the composition and microstructure of 〈110〉-oriented β-SiC bulks by halide CVD[J]. Journal of the European Ceramic Society, 2017, 37(4): 1217-1223.
[61] [61] LEONE S, MAUCERI M, PISTONE G, et al. SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor[J]. Materials Science Forum, 2006, 527/528/529: 179-182.
[62] [62] CAVALLOTTI C, ROSSI F, RAVASIO S, et al. A kinetic analysis of the growth and doping kinetics of the SiC chemical vapor deposition process[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9076-9087.
[63] [63] GUAN K, GAO Y, ZENG Q F, et al. Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1733-1743.
[64] [64] KOSHKA Y, LIN H D, MELNYCHUCK G, et al. Homoepitaxial growth of 4H-SiC using CH3Cl carbon precursor[J]. Materials Science Forum, 2005, 483/484/485: 81-84.
[65] [65] KOSHKA Y, LIN H D, MELNYCHUK G, et al. Epitaxial growth of 4H-SiC at low temperatures using CH3Cl carbon gas precursor: growth rate, surface morphology, and influence of gas phase nucleation[J]. Journal of Crystal Growth, 2006, 294(2): 260-267.
[66] [66] ZHANG W G, HTTINGER K J. CVD of SiC from methyltrichlorosilane. part I: deposition rates[J]. Chemical Vapor Deposition, 2001, 7(4): 167-172.
[67] [67] LU C Y, CHENG L F, ZHAO C N, et al. Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen[J]. Applied Surface Science, 2009, 255(17): 7495-7499.
[68] [68] MIHOPOULOS T G, G HUMMEL S, JENSEN K F. Simulation of flow and growth phenomena in a close-spaced reactor[J]. Journal of Crystal Growth, 1998, 195(1/2/3/4): 725-732.
[69] [69] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663.
[70] [70] ITO M, FUJIBAYASHI H, ITO H, et al. Simulation study of high-speed wafer rotation effects in a vertical reactor for 4H-SiC epitaxial growth on 150 mm substrates[J]. Materials Science Forum, 2014, 778/779/780: 171-174.
[71] [71] FUJIBAYASHI H, ITO M, ITO H, et al. Development of a 150 mm 4H-SiC epitaxial reactor with high-speed wafer rotation[J]. Applied Physics Express, 2014, 7(1): 015502.
[72] [72] LARKIN D J, NEUDECK P G, POWELL J A, et al. Site-competition epitaxy for superior silicon carbide electronics[J]. Applied Physics Letters, 1994, 65(13): 1659-1661.
[73] [73] LARKIN D J. SiC dopant incorporation control using site-competition CVD[J]. Physica Status Solidi (b), 1997, 202(1): 305-320.
[74] [74] ZHANG J, ELLISON A, HENRY A, et al. Nitrogen impurity incorporation behavior in a chimney HTCVD process: pressure and temperature dependence[J]. Materials Science and Engineering: B, 1999, 61/62: 151-154.
[75] [75] PEDERSEN H, BEYER F C, HASSAN J, et al. Donor incorporation in SiC epilayers grown at high growth rate with chloride-based CVD[J]. Journal of Crystal Growth, 2009, 311(5): 1321-1327.
[76] [76] HUANG Y C, WANG R, QIAN Y X, et al. Improving the doping efficiency of Al in 4H-SiC by co-doping group-ⅣB elements[EB/OL]. 2021.
[77] [77] KIMOTO T, ITOH A, MATSUNAMI H. Step-controlled epitaxial growth of high-quality SiC layers[J]. Physica Status Solidi (b), 1997, 202(1): 247-262.
[78] [78] FERRO G, CHAUSSENDE D, TSAVDARIS N. Understanding Al incorporation into 4H-SiC during epitaxy[J]. Journal of Crystal Growth, 2019, 507: 338-343.
[79] [79] CREE. SiC Epitaxy (EB/OL). (2021-07-15) https://www.wolfspeed.com/materials/products/sic-epitaxy.
[80] [80] TSUCHIDA H, KAMATA I, MIYAZAWA T, et al. Recent advances in 4H-SiC epitaxy for high-voltage power devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 2-12.
[81] [81] GAN F, JUN S D, KIMOTO T. Triple Shockley type stacking faults in 4H-SiC epilayers[J]. Applied Physics Letters, 2009, 94(9): 091910.
[82] [82] KAMATA I, ZHANG X, TSUCHIDA H. Photoluminescence of Frank-type defects on the basal plane in 4H-SiC epilayers[J]. Applied Physics Letters, 2010, 97(17): 172107.
[83] [83] HONG M H, SAMANT A V, PIROUZ P. Stacking fault energy of 6H-SiC and 4H-SiC single crystals[J]. Philosophical Magazine A, 2000, 80(4): 919-935.
[84] [84] IZUMI S, TSUCHIDA H, KAMATA I, et al. Structural analysis and reduction of in-grown stacking faults in 4H-SiC epilayers[J]. Applied Physics Letters, 2005, 86(20): 202108.
[85] [85] FUJIWARA H, KIMOTO T, TOJO T, et al. Characterization of in-grown stacking faults in 4H-SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes[J]. Applied Physics Letters, 2005, 87(5): 051912.
[86] [86] IRMSCHER K, DOERSCHEL J, ROST H J, et al. Stacking faults in heavily nitrogen doped 4H-SiC[J]. The European Physical Journal Applied Physics, 2004, 27(1/2/3): 243-246.
[87] [87] OKOJIE R S, XHANG M, PIROUZ P, et al. 4H- to 3C-SiC polytypic transformation during oxidation[J]. Materials Science Forum, 2002, 389/390/391/392/393: 451-454.
[88] [88] BERGMAN P, LENDENMANN H, NILSSON P A, et al. Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes[J]. Materials Science Forum, 2001, 353/354/355/356: 299-302.
[89] [89] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101.
[90] [90] NAKAYAMA K, TANAKA A, ASANO K, et al. Electrical characteristics of 4H-SiC pin diode with carbon implantation or thermal oxidation[J]. Materials Science Forum, 2012, 717/718/719/720: 989-992.
[91] [91] UEHIGASHI H, FUKADA K, ITO M, et al. Analysis and reduction of stacking faults in fast epitaxial growth[J]. Materials Science Forum, 2016, 858: 173-176.
[92] [92] OHTANI N, KATSUNO M, TSUGE H, et al. Dislocation processes during SiC bulk crystal growth[J]. Microelectronic Engineering, 2006, 83(1): 142-145.
[93] [93] YAZDANFAR M, PEDERSEN H, KORDINA O, et al. Effect of process parameters on dislocation density in thick 4H-SiC epitaxial layers grown by chloride-based CVD on 4° off-axis substrates[J]. Materials Science Forum, 2014, 778/779/780: 159-162.
[94] [94] WANG S, DUDLEY M, CARTER C H, et al. X-ray topographic studies of defects in PVT 6H-SiC substrates and epitaxial 6H-SiC thin films[J]. MRS Online Proceedings Library, 1994, 339(1): 735-740.
[95] [95] WAHAB Q, ELLISON A, HENRY A, et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes[J]. Applied Physics Letters, 2000, 76(19): 2725-2727.
[96] [96] NEUDECK P G, FAZI C. Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250 V) 4H-SiC p+n junction diodes. Ⅱ. Dynamic breakdown properties[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 485-492.
[97] [97] HA S, MIESZKOWSKI P, SKOWRONSKI M, et al. Dislocation conversion in 4H silicon carbide epitaxy[J]. Journal of Crystal Growth, 2002, 244(3/4): 257-266.
[98] [98] WHEELER V D, VANMIL B L, MYERS-WARD R L, et al. Effects of nitrogen doping on basal plane dislocation reduction in 8° off-cut 4H-SiC epilayers[J]. Materials Science Forum, 2011, 679/680: 63-66.
[99] [99] ZHANG Z, SUDARSHAN T S. Evolution of basal plane dislocations during 4H-silicon carbide homoepitaxy[J]. Applied Physics Letters, 2005, 87(16): 161917.
[100] [100] ZHANG Z, SUDARSHAN T S. Basal plane dislocation-free epitaxy of silicon carbide[J]. Applied Physics Letters, 2005, 87(15): 151913.
[101] [101] STAHLBUSH R E, MAHAKIK K N A, LELIS A J, et al. Effects of basal plane dislocations on SiC power device reliability[C]//2018 IEEE International Electron Devices Meeting (IEDM). December 1-5, 2018, San Francisco, CA, USA. IEEE, 2018: 19.4.1-19.4.4.
[102] [102] OHNO T, YAMAGUCHI H, KURODA S, et al. Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer[J]. Journal of Crystal Growth, 2004, 271(1/2): 1-7.
[103] [103] MYERS-WARD R L, VANMIL B L, STAHLBUSH R E, et al. Turning of basal plane dislocations during epitaxial growth on 4° off-axis 4H-SiC[J]. Materials Science Forum, 2009, 615/616/617: 105-108.
[104] [104] SONG H Z, SUDARSHAN T S. Basal plane dislocation conversion near the epilayer/substrate interface in epitaxial growth of 4° off-axis 4H-SiC[J]. Journal of Crystal Growth, 2013, 371: 94-101.
[105] [105] SUN Y Q, FENG G, ZHANG J H, et al. Reduction of epitaxial defects on 4°-off 4HSiC homo-epitaxial growth by optimizing in situ etching process[J]. Superlattices and Microstructures, 2016, 99: 145-150.
[106] [106] SONG H Z, RANA T, SUDARSHAN T S. Investigations of defect evolution and basal plane dislocation elimination in CVD epitaxial growth of silicon carbide on eutectic etched epilayers[J]. Journal of Crystal Growth, 2011, 320(1): 95-102.
[107] [107] VANMIL B L, STAHLBUSH R E, MYERS-WARD R L, et al. Basal plane dislocation reduction for 8° off-cut, 4H-SiC using in situ variable temperature growth interruptions[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(4): 1504.
[108] [108] BALACHANDRAN A, SUDARSHAN T S, CHANDRASHEKHAR M V S. Basal plane dislocation free recombination layers on low-doped buffer layer for power devices[J]. Crystal Growth & Design, 2017, 17(4): 1550-1557.
[109] [109] MA P, NI J J, SUN J W, et al. Three-dimensional detection and quantification of defects in SiC by optical coherence tomography[J]. Applied Optics, 2020, 59(6): 1746-1755.
[110] [110] OKADA T, KIMOTO T, NODA H, et al. Correspondence between surface morphological faults and crystallographic defects in 4H-SiC homoepitaxial film[J]. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 11A): 6320-6326.
[111] [111] KIMOTO T, MIYAMOTO N, MATSUNAMI H. Performance limiting surface defects in SiC epitaxial p-n junction diodes[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 471-477.
[112] [112] KONISHI K, NAKATA S, NAKAKI Y, et al. Effect of stacking faults in triangular defects on 4H-SiC junction barrier Schottky diodes[J]. Japanese Journal of Applied Physics, 2013, 52(4S): 04CP05.
[113] [113] NEUDECK P G. Electrical impact of SiC structural crystal defects on high electric field devices[J]. Materials Science Forum, 2000, 338/339/340/341/342: 1161-1166.
[114] [114] LI Y, ZHAO Z F, YU L, et al. Reduction of morphological defects in 4H-SiC epitaxial layers[J]. Journal of Crystal Growth, 2019, 506: 108-113.
[115] [115] LEONE S, PEDERSEN H, HENRY A, et al. Improved morphology for epitaxial growth on 4° off-axis 4H-SiC substrates[J]. Journal of Crystal Growth, 2009, 311(12): 3265-3272.
[116] [116] YAN G G, HE Y W, SHEN Z W, et al. Effect of C/Si ratio on growth of 4H-SiC epitaxial layers on on-axis and 4° off-axis substrates[J]. Journal of Crystal Growth, 2020, 531: 125362.
[117] [117] DALIBOR T, PENSL G, MATSUNAMI H, et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy[J]. Physica Status Solidi (a), 1997, 162(1): 199-225.
[118] [118] DANNO K, KIMOTO T. Deep level transient spectroscopy on as-grown and electron-irradiated p-type 4H-SiC epilayers[J]. Journal of Applied Physics, 2007, 101(10): 103704.
[119] [119] SASAKI S, KAWAHARA K, FENG G, et al. Major deep levels with the same microstructures observed in n-type 4H-SiC and 6H-SiC[J]. Journal of Applied Physics, 2011, 109(1): 013705.
[120] [120] KLEIN P B, SHANABROOK B V, HUH S W, et al. Lifetime-limiting defects in n-4H-SiC epilayers[J]. Applied Physics Letters, 2006, 88(5): 052110.
[121] [121] DANNO K, NAKAMURA D, KIMOTO T. Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation[J]. Applied Physics Letters, 2007, 90(20): 202109.
[122] [122] KAWAHARA K, JUN S D, KIMOTO T. Analytical model for reduction of deep levels in SiC by thermal oxidation[J]. Journal of Applied Physics, 2012, 111(5): 053710.
[123] [123] KAWAHARA K, THANG TRINH X, SON N T, et al. Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance[J]. Applied Physics Letters, 2013, 102(11): 112106.
[124] [124] HIYOSHI T, KIMOTO T. Reduction of deep levels and improvement of carrier lifetime in n-type 4H-SiC by thermal oxidation[J]. Applied Physics Express, 2009, 2: 041101.
[125] [125] HIYOSHI T, KIMOTO T. Elimination of the major deep levels in n- and p-type 4H-SiC by two-step thermal treatment[J]. Applied Physics Express, 2009, 2(9): 091101.
[126] [126] STORASTA L, TSUCHIDA H. Reduction of traps and improvement of carrier lifetime in 4H-SiC epilayers by ion implantation[J]. Applied Physics Letters, 2007, 90(6): 062116.
[127] [127] LILJA L, BOOKER I D, HASSAN J U, et al. The influence of growth conditions on carrier lifetime in 4H-SiC epilayers[J]. Journal of Crystal Growth, 2013, 381: 43-50.
[128] [128] LITTON C W, JOHNSTONE D, AKARCA-BIYIKLI S, et al. Effect of CSi ratio on deep levels in epitaxial 4H-SiC[J]. Applied Physics Letters, 2006, 88(12): 121914.
[129] [129] DANNO K, HORI T, KIMOTO T. Impacts of growth parameters on deep levels in n-type 4H-SiC[J]. Journal of Applied Physics, 2007, 101(5): 053709.
[130] [130] HAYASHI T, ASANO K, SUDA J, et al. Enhancement and control of carrier lifetimes in p-type 4H-SiC epilayers[J]. Journal of Applied Physics, 2012, 112(6): 064503.
[131] [131] OKUDA T, MIYAZAWA T, TSUCHIDA H, et al. Enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epitaxial layers by combination of thermal oxidation and hydrogen annealing[J]. Applied Physics Express, 2014, 7(8): 085501.
[132] [132] RUSSELL S A O, PREZ-TOMS A, MCCONVILLE C F, et al. Heteroepitaxial beta-Ga2O3 on 4H-SiC for an FET with reduced self heating[J]. IEEE Journal of the Electron Devices Society, 2017, 5(4): 256-261.
[133] [133] NEPAL N, KATZER D S, DOWNEY B P, et al. Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy[J]. Journal of Vacuum Science & Technology A, 2020, 38(6): 063406.
[134] [134] XIA X C, CHEN Y P, FENG Q J, et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition[J]. Applied Physics Letters, 2016, 108(20): 202103.
[135] [135] NIKOLAEV V I, STEPANOV S I, PECHNIKOV A I, et al. HVPE growth and characterization of ε-Ga2O3 films on various substrates[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 045014.
Get Citation
Copy Citation Text
KAI Cuihong, WANG Rong, YANG Deren, PI Xiaodong. Epitaxy of Wide Bandgap Semiconductors on Silicon Carbide Substrate[J]. Journal of Synthetic Crystals, 2021, 50(9): 1780
Category:
Received: Jun. 8, 2021
Accepted: --
Published Online: Nov. 8, 2021
The Author Email: Cuihong KAI (kaicuihong@zju.edu.cn)
CSTR:32186.14.