Chinese Journal of Lasers, Volume. 43, Issue 8, 802002(2016)
Superhydrophobic Titanium Surface Micro/Nanostructures Induced by Femtosecond Laser
[1] [1] Kulkarni M, Patil-Sen Y, Junkar I, et al. Wettability studies of topologically distinct titanium surfaces[J]. Colloid Surface B, 2015, 129: 47-53.
[2] [2] Bourikas K, Kordulis C, Lycourghiotis A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts[J]. Chemical Reviews, 2014, 114(19): 9754-9823.
[3] [3] Liu S, Chen L, Tan L, et al. A high efficiency approach for a titanium surface antifouling modification: PEG-o-quinone linked with titanium via electron transfer process[J]. Journal of Materials Chemistry B, 2014, 2(39): 6758-6766.
[4] [4] Liu X, Chu P K, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering R, 2004, 47(3): 49-121.
[5] [5] Yang Y, Yang J, Liang C, et al. Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: A new approach to improving biocompatibility[J]. Optics Express, 2009, 17(23): 21124-21133.
[6] [6] Lorenzetti M, Doga I, Stoicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1644-1651.
[7] [7] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review[J]. Clinical Oral Implants Research, 2009, 20(s4): 172-184.
[8] [8] Faeda R S, Tavares H S, Sartori R, et al. Evaluation of titanium implants with surface modification by laser beam: biomechanical study in rabbit tibias[J]. Brazilian Oral Research, 2009, 23(2): 137-143.
[9] [9] Lin L, Wang H, Ni M, et al. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures[J]. Journal of Orthopaedic Trauma, 2014, 2(1): 35-42.
[10] [10] Larsson C, Thomsen P, Lausmaa J, et al. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology[J]. Biomaterials, 1994, 15(13): 1062-1074.
[11] [11] Parvizi J, Wickstrom E, Zeiger A R, et al. Frank stinchfield award: titanium surface with biologic activity against infection[J]. Clinical Orthopaedics and Related Research, 2004, 429: 33-38.
[12] [12] Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12(5): 1531-1551.
[13] [13] Lai Y, Gao X, Zhuang H, et al. Designing superhydrophobic porous nanostructures with tunable water adhesion[J]. Advanced Materials, 2009, 21(37): 3799-3803.
[14] [14] Wang D, Wang X, Liu X, et al. Engineering a titanium surface with controllable oleophobicity and switchable oil adhesion[J]. The Journal of Physical Chemistry C, 2010, 114(21): 9938-9944.
[15] [15] Fan W, Qian J, Bai F, et al. A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses[J]. Chemical Physics Letters, 2016, 644: 261-266.
[16] [16] Su Yahui, Wang Chaowei, Han Mengmeng, et al. Refractive-index-mismatch induced aberrations in femtosecond laser processing and its correction[J]. Acta Optica Sinica, 2014, 34(s1): s122005.
[17] [17] Fan Wenzhong, Zhao Quanzhong. Recent progress in ultrashort pulsed laser microwelding of glasses[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080001.
[18] [18] Guo X, Zhao Q, Li R, et al. Synthesis of ZnO nanoflowers and their wettabilities and photocatalytic properties[J]. Optics Express, 2010, 18(17): 18401-18406.
[19] [19] Liu Shuang, Liu Xin, Tang Wenlong, et al. Study of Ti: sapphire double line waveguide written by femtosecond laser[J]. Chinese J Lasers, 2015, 42(2): 0203001.
[20] [20] Wu Dongjiang, Zhou Siyu, Ma Guangyi, et al. Experiment of quartz glass flute precise thinning by femtosecond laser[J]. Chinese J Lasers, 2015, 42(3): 0303009.
[21] [21] Dong X, Song H, Liu S. Femtosecond laser induced periodic large-scale surface structures on metals[J]. Chinese Optics Letters, 2015, 13(7): 071001.
[22] [22] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Journal of Industrial and Engineering Chemistry, 1936, 28(8): 988-994.
[23] [23] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[24] [24] Wang Haozhu, Yang Fenghe, Yang Fan, et al. Investigation of femtosecond-laser induced periodic surface structure on molybdenum[J]. Chinese J Lasers, 2015, 4(2): 0103001.
[25] [25] Ardron M, Weston N, Hand D. A practical technique for the generation of highly uniform LIPSS[J]. Applied Surface Science, 2014, 313: 123-131.
Get Citation
Copy Citation Text
Pan Huaihai, Wang Zhuo, Fan Wenzhong, Wang Chengwei, Li Hongjin, Bai Feng, Qian Jing, Zhao Quanzhong. Superhydrophobic Titanium Surface Micro/Nanostructures Induced by Femtosecond Laser[J]. Chinese Journal of Lasers, 2016, 43(8): 802002
Category: laser manufacturing
Received: Mar. 14, 2016
Accepted: --
Published Online: Aug. 10, 2016
The Author Email: Huaihai Pan (hhp421@siom.ac.cn)