Chinese Journal of Lasers, Volume. 50, Issue 21, 2107101(2023)

Research Progress of Organic NIR-II Fluorescent Probes

Jiahui Liu1,2, Yanqing Yang3, Rui Ma3, and Kebin Shi3,4、*
Author Affiliations
  • 1Nantong Stomatological Hospital, Nantong 226000, Jiangsu, China
  • 2Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong 226000, Jiangsu, China
  • 3Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226000, Jiangsu, China
  • 4State Key Laboratory For Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;Abstractive
  • show less
    References(117)

    [1] Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 452, 580-589(2008).

    [2] Li Z Q, Zaid W, Hartzler T et al. Indocyanine green-assisted dental imaging in the first and second near-infrared windows as compared with X-ray imaging[J]. Annals of the New York Academy of Sciences, 1448, 42-51(2019).

    [3] Li C Y, Wang Q B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window[J]. ACS Nano, 12, 9654-9659(2018).

    [4] Miao Q Q, Pu K Y. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics[J]. Advanced Materials, 30, e1801778(2018).

    [5] Ding F, Zhan Y B, Lu X J et al. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging[J]. Chemical Science, 9, 4370-4380(2018).

    [6] Diao S, Blackburn J L, Hong G S et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm[J]. Angewandte Chemie (International Ed. in English), 54, 14758-14762(2015).

    [7] Starosolski Z, Bhavane R, Ghaghada K B et al. Indocyanine green fluorescence in second near-infrared (NIR-II) window[J]. PLoS One, 12, e0187563(2017).

    [8] Carr J A, Franke D, Caram J R et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 4465-4470(2018).

    [9] Zhu S J, Tian R, Antaris A L et al. Near-infrared-II molecular dyes for cancer imaging and surgery[J]. Advanced Materials, 31, e1900321(2019).

    [10] Robinson J T, Hong G S, Liang Y Y et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake[J]. Journal of the American Chemical Society, 134, 10664-10669(2012).

    [11] Hong G S, Diao S, Chang J L et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 8, 723-730(2014).

    [12] Wang Z H, She M Y, Chen J A et al. Rational modulation strategies to improve bioimaging applications for organic NIR-II fluorophores[J]. Advanced Optical Materials, 10, 2101634(2022).

    [13] Welsher K, Sherlock S P, Dai H J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 8943-8948(2011).

    [14] He S Q, Song J, Qu J L et al. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics[J]. Chemical Society Reviews, 47, 4258-4278(2018).

    [15] Kenry , Duan Y K, Liu B. Recent advances of optical imaging in the second near-infrared window[J]. Advanced Materials, 30, e1802394(2018).

    [16] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [17] Cai Z C, Zhu L, Wang M Q et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates[J]. Theranostics, 10, 4265-4276(2020).

    [18] Zhang H Q, Zhu L, Gao D S et al. Imaging the deep spinal cord microvascular structure and function with high-speed NIR-II fluorescence microscopy[J]. Small Methods, 6, e2200155(2022).

    [19] Gao L, Gao B B, Wang F. Applications of super-resolution microscopy techniques in living brain imaging[J]. Chinese Journal of Lasers, 49, 2007301(2022).

    [20] Hong G S, Lee J C, Robinson J T et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence[J]. Nature Medicine, 18, 1841-1846(2012).

    [21] Su Y B, Yu B, Wang S et al. NIR-II bioimaging of small organic molecule[J]. Biomaterials, 271, 120717(2021).

    [22] Ding F, Fan Y, Sun Y et al. Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deep-tissue molecular imaging[J]. Advanced Healthcare Materials, 8, 1900260(2019).

    [23] Tan Y H, Liu P Y, Li D X et al. NIR-II aggregation-induced emission luminogens for tumor phototheranostics[J]. Biosensors, 12, 46(2022).

    [24] Wang R R, Cui D D, Shi Y J. Photosensitive AgBr@PLGA nanoprobe for near infrared two-region tumor-specific photoacoustic imaging[J]. Chinese Journal of Lasers, 49, 2007204(2022).

    [25] Wei Z W, Yang S, Wu M et al. Recent progress in near-infrared-II fluorescence imaging probes for fluorescence surgical navigation[J]. Chinese Journal of Lasers, 49, 0502102(2022).

    [26] Wang Y F, Zhang W S, Sun P F et al. A novel multimodal NIR-II nanoprobe for the detection of metastatic lymph nodes and targeting chemo-photothermal therapy in oral squamous cell carcinoma[J]. Theranostics, 9, 391-404(2019).

    [27] Yin B L, Qin Q Q, Li Z et al. Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment[J]. Nano Today, 45, 101550(2022).

    [28] Li M, Li Z, Yu D N et al. Quinoid conjugated polymer nanoparticles with NIR-II absorption peak toward efficient photothermal therapy[J]. Chemistry, 29, e202202930(2023).

    [29] Lei Z H, Zhang F. Molecular engineering of NIR-II fluorophores for improved biomedical detection[J]. Angewandte Chemie (International Ed. in English), 60, 16294-16308(2021).

    [30] Zhu S J, Hu Z B, Tian R et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging[J]. Advanced Materials, 30, 1802546(2018).

    [31] Zhao X, Zhang F, Lei Z H. The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications[J]. Chemical Science, 13, 11280-11293(2022).

    [32] Cosco E D, Caram J R, Bruns O T et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging[J]. Angewandte Chemie (International Ed. in English), 56, 13126-13129(2017).

    [33] Yang Y, Sun C X, Wang S F et al. Counterion-paired bright heptamethine fluorophores with NIR-II excitation and emission enable multiplexed biomedical imaging[J]. Angewandte Chemie International Edition, 61, e202117436(2022).

    [34] Wang S F, Fan Y, Li D D et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing[J]. Nature Communications, 10, 1058(2019).

    [35] Tao Z M, Hong G S, Shinji C et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm[J]. Angewandte Chemie (International Ed. in English), 52, 13002-13006(2013).

    [36] Li B H, Lu L F, Zhao M Y et al. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging[J]. Angewandte Chemie International Edition, 57, 7483-7487(2018).

    [37] Li B H, Zhao M Y, Feng L S et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging[J]. Nature Communications, 11, 3102(2020).

    [38] Ding B B, Xiao Y L, Zhou H et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow[J]. Journal of Medicinal Chemistry, 62, 2049-2059(2019).

    [39] Antaris A L, Chen H, Cheng K et al. A small-molecule dye for NIR-II imaging[J]. Nature Materials, 15, 235-242(2016).

    [40] Antaris A L, Chen H, Diao S et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging[J]. Nature Communications, 8, 15269(2017).

    [41] Shou K Q, Qu C R, Sun Y et al. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe[J]. Advanced Functional Materials, 27, 1700995(2017).

    [42] Zhang R P, Xu Y L, Zhang Y et al. Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy[J]. Chemical Science, 10, 8348-8353(2019).

    [43] Guo B, Huang Z M, Shi Q et al. Organic small molecule based photothermal agents with molecular rotors for malignant breast cancer therapy[J]. Advanced Functional Materials, 30, 1907093(2020).

    [44] Yang Q L, Ma H L, Liang Y Y et al. Rational design of high brightness NIR-II organic dyes with S-D-A-D-S structure[J]. Accounts of Materials Research, 2, 170-183(2021).

    [45] Tian R, Ma H L, Yang Q L et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery[J]. Chemical Science, 10, 326-332(2019).

    [46] Zhang X D, Wang H S, Antaris A L et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore[J]. Advanced Materials, 28, 6872-6879(2016).

    [47] Yang Q L, Hu Z B, Zhu S J et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance[J]. Journal of the American Chemical Society, 140, 1715-1724(2018).

    [48] Li Y X, Zhou H L, Bi R Z et al. Acceptor engineering of small-molecule fluorophores for NIR-II fluorescence and photoacoustic imaging[J]. Journal of Materials Chemistry B, 9, 9951-9960(2021).

    [49] Li Y, Gao J F, Wang S P et al. Self-assembled NIR-II fluorophores with ultralong blood circulation for cancer imaging and image-guided surgery[J]. Journal of Medicinal Chemistry, 65, 2078-2090(2022).

    [50] Qu C R, Xiao Y L, Zhou H et al. Quaternary ammonium salt based NIR-II probes for in vivo imaging[J]. Advanced Optical Materials, 7, 1900229(2019).

    [51] Sheng Z H, Guo B, Hu D H et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors[J]. Advanced Materials, 30, e1800766(2018).

    [52] Wu W, Yang Y Q, Yang Y et al. An organic NIR-II nanofluorophore with aggregation-induced emission characteristics for in vivo fluorescence imaging[J]. International Journal of Nanomedicine, 14, 3571-3582(2019).

    [53] Liu S J, Chen R Z, Zhang J Q et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1500 nanometer[J]. ACS Nano, 14, 14228-14239(2020).

    [54] Li Y Y, Cai Z C, Liu S J et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels[J]. Nature Communications, 11, 1255(2020).

    [55] Shen H C, Sun F Y, Zhu X Y et al. Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and chemiluminescence imaging[J]. Journal of the American Chemical Society, 144, 15391-15402(2022).

    [56] Yan D Y, Wang M, Wu Q et al. Multimodal imaging-guided photothermal immunotherapy based on a versatile NIR-II aggregation-induced emission luminogen[J]. Angewandte Chemie (International Ed. in English), 61, e202202614(2022).

    [57] Chen S Y, Pan Y H, Chen K et al. Increasing molecular planarity through donor/side-chain engineering for improved NIR-IIa fluorescence imaging and NIR-II photothermal therapy under 1064 nm[J]. Angewandte Chemie (International Ed. in English), 62, e202215372(2023).

    [58] Wu W, Yang Y Q, Yang Y et al. Molecular engineering of an organic NIR-II fluorophore with aggregation-induced emission characteristics for in vivo imaging[J]. Small, 15, e1805549(2019).

    [59] Li S, Yin C F, Wang R N et al. Second near-infrared aggregation-induced emission fluorophores with phenothiazine derivatives as the donor and 6, 7-diphenyl-[1, 2, 5]thiadiazolo[3, 4-g]quinoxaline as the acceptor for in vivo imaging[J]. ACS Applied Materials & Interfaces, 12, 20281-20286(2020).

    [60] Wan H, Yue J Y, Zhu S J et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues[J]. Nature Communications, 9, 1171(2018).

    [61] Hong G S, Zou Y P, Antaris A L et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J]. Nature Communications, 5, 4206(2014).

    [62] Guo B, Feng Z, Hu D H et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging[J]. Advanced Materials, 31, e1902504(2019).

    [63] Liu Y, Liu J F, Chen D D et al. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging[J]. Angewandte Chemie International Edition, 59, 21049-21057(2020).

    [64] Zhou H L, Lu Z Y, Zhang Y H et al. Simultaneous enhancement of the long-wavelength NIR-II brightness and photothermal performance of semiconducting polymer nanoparticles[J]. ACS Applied Materials & Interfaces, 14, 8705-8717(2022).

    [65] Song X W, Lu X M, Sun B et al. Conjugated polymer nanoparticles with absorption beyond 1000 nm for NIR-II fluorescence imaging system guided NIR-II photothermal therapy[J]. ACS Applied Polymer Materials, 2, 4171-4179(2020).

    [66] Zhang W S, Huang T, Li J W et al. 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy[J]. ACS Applied Materials & Interfaces, 11, 16311-16319(2019).

    [67] Yang Y Q, Fan X X, Li L et al. Semiconducting polymer nanoparticles as theranostic system for near-infrared-II fluorescence imaging and photothermal therapy under safe laser fluence[J]. ACS Nano, 14, 2509-2521(2020).

    [68] Zhang Z, Fang X F, Liu Z H et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging[J]. Angewandte Chemie (International Ed. in English), 59, 3691-3698(2020).

    [69] Liu S J, Ou H L, Li Y Y et al. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR-IIa fluorescence imaging[J]. Journal of the American Chemical Society, 142, 15146-15156(2020).

    [70] Li Y X, Su S P, Yang C H et al. Molecular design of ultrabright semiconducting polymer dots with high NIR-II fluorescence for 3D tumor mapping[J]. Advanced Healthcare Materials, 10, 2100993(2021).

    [71] Sun C X, Li B H, Zhao M Y et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm[J]. Journal of the American Chemical Society, 141, 19221-19225(2019).

    [72] Chen W, Cheng C A, Cosco E D et al. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles[J]. Journal of the American Chemical Society, 141, 12475-12480(2019).

    [73] Sun P F, Wu Q, Sun X L et al. J-aggregate squaraine nanoparticles with bright NIR-II fluorescence for imaging guided photothermal therapy[J]. Chemical Communications, 54, 13395-13398(2018).

    [74] Lei Z H, Sun C X, Pei P et al. Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing[J]. Angewandte Chemie (International Ed. in English), 58, 8166-8171(2019).

    [75] Dai H M, Ruan X H, Shao J J et al. Activatable NIR-II small molecules for bioimaging[J]. Laser & Optoelectronics Progress, 59, 0617010(2022).

    [76] Feng Z, Yu X M, Jiang M X et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor[J]. Theranostics, 9, 5706-5719(2019).

    [77] Cheng K, Chen H, Jenkins C H et al. Synthesis, characterization, and biomedical applications of a targeted dual-modal near-infrared-II fluorescence and photoacoustic imaging nanoprobe[J]. ACS Nano, 11, 12276-12291(2017).

    [78] Ding F, Li C L, Xu Y L et al. PEGylation regulates self-assembled small-molecule dye-based probes from single molecule to nanoparticle size for multifunctional NIR-II bioimaging[J]. Advanced Healthcare Materials, 7, e1800973(2018).

    [79] Yi W R, Zhou H, Li A G et al. A NIR-II fluorescent probe for articular cartilage degeneration imaging and osteoarthritis detection[J]. Biomaterials Science, 7, 1043-1051(2019).

    [80] Mu J, Xiao M, Shi Y et al. The chemistry of organic contrast agents in the NIR-II window[J]. Angewandte Chemie (International Ed. in English), 61, e202114722(2022).

    [81] Ding F, Chen S, Zhang W S et al. UPAR targeted molecular imaging of cancers with small molecule-based probes[J]. Bioorganic & Medicinal Chemistry, 25, 5179-5184(2017).

    [82] Ye F Y, Huang W J, Li C L et al. Near-infrared fluorescence/photoacoustic agent with an intensifying optical performance for imaging-guided effective photothermal therapy[J]. Advanced Therapeutics, 3, 2000170(2020).

    [83] Zhou B, Hu Z B, Jiang Y R et al. Theoretical exploitation of acceptors based on benzobis (thiadiazole) and derivatives for organic NIR-II fluorophores[J]. Physical Chemistry Chemical Physics, 20, 19759-19767(2018).

    [84] Zhang W S, Chen S Y, Ye S A et al. Enhancing NIR-II phosphorescence through phosphorescence resonance energy transfer for tumor-hypoxia imaging[J]. ACS Materials Letters, 5, 116-124(2023).

    [85] Shi W H, Diao S C, Liang T T et al. A renal-clearable PEGylated semiconducting oligomer for the NIR-II fluorescence imaging of tumor[J]. ACS Applied Bio Materials, 5, 4965-4971(2022).

    [86] Zhou X B, Zhang K, Yang C J et al. Ultrabright and highly polarity-sensitive NIR-I/NIR-II fluorophores for the tracking of lipid droplets and staging of fatty liver disease[J]. Advanced Functional Materials, 32, 2109929(2022).

    [87] Li S L, Deng X Q, Cheng H et al. Bright near-infrared π- conjugated oligomer nanoparticles for deep-brain three-photon microscopy excited at the 1700 nm window in vivo[J]. ACS Nano, 16, 12480-12487(2022).

    [88] Li Y X, Zha M L, Yang G A et al. NIR-II fluorescent brightness promoted by “ring fusion” for the detection of intestinal inflammation[J]. Chemistry-A European Journal, 27, 13085-13091(2021).

    [89] Li Q Q, Liu Y S, Zhao B S et al. A single-molecular ruthenium(ii) complex-based NIR-II fluorophore for enhanced chemo-photothermal therapy[J]. Chemical Communications, 58, 6546-6549(2022).

    [90] Ji A Y, Lou H Y, Qu C R et al. Acceptor engineering for NIR-II dyes with high photochemical and biomedical performance[J]. Nature Communications, 13, 3815(2022).

    [91] Zeng X D, Xiao Y L, Lin J C et al. Near-infrared II dye-protein complex for biomedical imaging and imaging-guided photothermal therapy[J]. Advanced Healthcare Materials, 7, e1800589(2018).

    [92] Gao S, Wei G G, Zhang S H et al. Albumin tailoring fluorescence and photothermal conversion effect of near-infrared-II fluorophore with aggregation-induced emission characteristics[J]. Nature Communications, 10, 2206(2019).

    [93] Yin S, Song J W, Liu D F et al. NIR-II AIEgens with photodynamic effect for advanced theranostics[J]. Molecules, 27, 6649(2022).

    [94] Wu W B, Mao D, Xu S D et al. Polymerization-enhanced photosensitization[J]. Chem, 4, 1937-1951(2018).

    [95] Qu Q J, Zhang Z Y, Guo X Y et al. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor[J]. Journal of Nanobiotechnology, 20, 143(2022).

    [96] Liu J, Chen C, Ji S L et al. Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection[J]. Chemical Science, 8, 2782-2789(2017).

    [97] Yu W B, Guo B, Zhang H Q et al. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots[J]. Science Bulletin, 64, 410-416(2019).

    [98] Li Y Y, He M B, Liu Z M et al. A simple strategy for the efficient design of mitochondria-targeting NIR-II phototheranostics[J]. Journal of Materials Chemistry B, 11, 2700-2705(2023).

    [99] Alifu N, Zebibula A, Qi J et al. Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy[J]. ACS Nano, 12, 11282-11293(2018).

    [100] Li Y, Liu Y F, Li Q Q et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm[J]. Chemical Science, 11, 2621-2626(2020).

    [101] Xu P F, Kang F, Yang W D et al. Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for in vivo imaging[J]. Nanoscale, 12, 5084-5090(2020).

    [102] Chen Y, Yu H L, Wang Y S et al. Thiadiazoloquinoxaline derivative-based NIR-II organic molecules for NIR-II fluorescence imaging and photothermal therapy[J]. Biomaterials Science, 10, 2772-2788(2022).

    [103] Wei Q D, Xu D S, Li T Y et al. Recent advances of NIR-II emissive semiconducting polymer dots for in vivo tumor fluorescence imaging and theranostics[J]. Biosensors, 12, 1126(2022).

    [104] Wang Y X, Feng L H, Wang S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy[J]. Advanced Functional Materials, 29, 1806818(2019).

    [105] Li J, Jiang R C, Wang Q et al. Semiconducting polymer nanotheranostics for NIR-II/photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy[J]. Biomaterials, 217, 119304(2019).

    [106] Tang Y F, Li Y Y, Lu X M et al. Bio-erasable intermolecular donor–acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging[J]. Advanced Functional Materials, 29, 1807376(2019).

    [107] Wang S W, Liu J E, Feng G X et al. NIR-II excitable conjugated polymer dots with bright NIR-I emission for deep in vivo two-photon brain imaging through intact skull[J]. Advanced Functional Materials, 29, 1808365(2019).

    [108] Sun P F, Jiang X Y, Sun B et al. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy[J]. Biomaterials, 280, 121319(2022).

    [109] Yang G Z, Wang Y, Zhou S et al. Water-dispersed semiconducting polymer for NIR-II fluorescence imaging and NIR-II laser-triggered photothermal therapy[J]. Dyes and Pigments, 210, 110960(2023).

    [110] Dai Y N, Zhang F, Chen K et al. An activatable phototheranostic nanoplatform for tumor specific NIR-II fluorescence imaging and synergistic NIR-II photothermal-chemodynamic therapy[J]. Small, 19, e2206053(2023).

    [111] Zhang W S, Sun X L, Huang T et al. 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy[J]. Chemical Communications, 55, 9487-9490(2019).

    [112] Sun P F, Yang Z L, Qu F et al. Conjugated/nonconjugated alternating copolymers for enhanced NIR-II fluorescence imaging and NIR-II photothermal-ferrotherapy[J]. Journal of Materials Chemistry B, 10, 9830-9837(2022).

    [113] Ma N, Liu Y, Chen D D et al. In vivo imaging of exosomes labeled with NIR-II polymer dots in liver-injured mice[J]. Biomacromolecules, 23, 4825-4833(2022).

    [114] Peng L, Liu Y, Zhang J et al. Surface plasmon-enhanced NIR-II fluorescence in a multilayer nanoprobe for through-skull mouse brain imaging[J]. ACS Applied Materials & Interfaces, 14, 38575-38583(2022).

    [115] Hsu K F, Su S P, Lu H F et al. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging[J]. Chemical Science, 13, 10074-10081(2022).

    [116] Ma G C, Liu Z K, Zhu C G et al. H2O2-responsive NIR-II AIE nanobomb for carbon monoxide boosting low-temperature photothermal therapy[J]. Angewandte Chemie International Edition, 61, e202207213(2022).

    [117] Wang Q, Xia B, Xu J Z et al. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy[J]. Materials Chemistry Frontiers, 3, 650-655(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jiahui Liu, Yanqing Yang, Rui Ma, Kebin Shi. Research Progress of Organic NIR-II Fluorescent Probes[J]. Chinese Journal of Lasers, 2023, 50(21): 2107101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: May. 10, 2023

    Accepted: May. 30, 2023

    Published Online: Nov. 17, 2023

    The Author Email: Kebin Shi (kebinshi@pku.edu.cn)

    DOI:10.3788/CJL230819

    Topics