Journal of Inorganic Materials, Volume. 36, Issue 4, 347(2021)

Application of Entropy Engineering in Thermoelectrics

Qingyu YANG1,2, Pengfei QIU1,2, Xun SHI1,2、*, and Lidong CHEN1,2
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(70)

    [2] ZHU T J, LIU Y T, FU C G et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Advanced Materials, 29, 26(2017).

    [3] SLACK G A, ROWE D. CRC Handbook of Thermoelectrics[J]. Boca Raton, FL: CRC press, 407-440(1995).

    [4] HICKS L, DRESSELHAUS . Thermoelectric figure of merit of a one-dimensional conductor[J]. Physical Review B, 47, 16631(1993).

    [6] SHI X, KONG H, LI C P et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites[J]. Applied Physics Letters, 92, 182101(2008).

    [10] LIU R, CHEN H, ZHAO K et al. Entropy as a gene-like performance indicator promoting thermoelectric materials[J]. Advanced Materials, 29, 1702712(2017).

    [11] YEH J W, CHEN S K, LIN S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [12] SENKOV O N, MILLER J D, MIRACLE D B et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nature Communications, 6, 1-10(2015).

    [13] ZHANG Y, ZUO T T, TANG Z et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 61, 1-93(2014).

    [14] WEI P C, LIAO C N, WU H J et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance[J]. Advanced Materials, 32, 1906457(2020).

    [15] MIRACLE D B, MILLER J D, SENKOV O N et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 16, 494-525(2014).

    [17] LUCAS M S, BELYEA D, BAUER C et al. Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys[J]. Journal of Applied Physics, 113, 17A923(2013).

    [18] KOZELJ P, VRTNIK S, JELEN A et al. Discovery of a superconducting high-entropy alloy[J]. Physical Review Letters, 113, 5(2014).

    [19] KAO Y F, CHEN S K, SHEU J H et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys[J]. International Journal of Hydrogen Energy, 35, 9046-9059(2010).

    [20] BERARDAN D, FRANGER S, DRAGOE D et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).

    [21] BERARDAN D, FRANGER S, MEENA A K et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 4, 9536-9541(2016).

    [22] SHAFEIE S, GUO S, HU Q et al. High-entropy alloys as high-temperature thermoelectric materials[J]. Journal of Applied Physics, 118, 184905(2015).

    [23] RA S. Thermodynamics of Solids[J]. New York: John Wiley and Sons, 178(1972).

    [24] SONOMURA H. Internal strain energy in quaternary III-V compound alloys[J]. Journal of Applied Physics, 59, 739-742(1986).

    [25] SLAUGHTER W, PETROLITO J. The linearized theory of elasticity[J]. Applied Mechanics Reviews, 55, B90(2002).

    [27] YANG J, MEISNER G P, CHEN L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds[J]. Applied Physics Letters, 85, 1140-1142(2004).

    [28] MEISNER G P, MORELLI D T, HU S et al. Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members[J]. Physical Review Letters, 80, 3551-3554(1998).

    [30] CHENG N, LIU R, BAI S et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds[J]. Journal of Applied Physics, 115, 163705(2014).

    [31] QIN Y, QIU P, LIU R et al. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds[J]. Journal of Materials Chemistry A, 4, 1277-1289(2016).

    [33] MAO J, KIM H S, SHUAI J et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system[J]. Acta Materialia, 103, 633-642(2016).

    [35] BANERJEE S, RAMAKRISHNAN T V, DASGUPTA C. Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates[J]. Physical Review B, 83, 024510(2011).

    [36] LIU W, LUKAS K C, MCENANEY K et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion[J]. Energy & Environmental Science, 6, 552-560(2013).

    [39] HU L, ZHANG Y, WU H et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance[J]. Advanced Energy Materials, 8, 1802116(2018).

    [40] ZHAO S Y, CHEN R, LI J Q et al. Synergistic effects on thermoelectric properties of Sn0.5Ge0.4875Te with Pb alloying[J]. Journal of Alloys and Compounds, 777, 1334-1339(2019).

    [41] POSFAI M, BUSECK P R. Djurleite, digenite, and chalcocite: intergrowths and transformations[J]. American Mineralogist, 79, 308-315(1994).

    [42] GULAY L, DASZKIEWICZ M, STROK O et al. Crystal structure of Cu2Se[J]. Chemistry of Metals and Alloys, 4, 200-205(2011).

    [43] PASHINKIN A, FEDOROV V. Phase equilibria in the Cu-Te system[J]. Inorganic Materials, 39, 539-554(2003).

    [45] ZHAO K, QIU P, SONG Q et al. Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5 liquid-like materials[J]. Materials Today Physics, 1, 14-23(2017).

    [46] ZHAO K, ZHU C, QIU P et al. High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures[J]. Nano Energy, 42, 43-50(2017).

    [48] CHEN R, QIU P, JIANG B et al. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering[J]. Journal of Materials Chemistry A, 6, 6493-6502(2018).

    [49] JIANG B, QIU P, CHEN H et al. Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials[J]. Materials Today Physics, 5, 20-28(2018).

    [51] PEI Y, LALONDE A, IWANAGA S et al. High thermoelectric figure of merit in heavy hole dominated PbTe[J]. Energy & Environmental Science, 4, 2085-2089(2011).

    [52] LI J, ZHANG X, CHEN Z et al. Low-symmetry rhombohedral GeTe thermoelectrics[J]. Joule, 2, 976-987(2018).

    [54] FAN Z, WANG H, WU Y et al. Thermoelectric performance of PbSnTeSe high-entropy alloys[J]. Materials Research Letters, 5, 187-194(2017).

    [56] RAOUX S, MUñOZ B, CHENG H Y et al. Phase transitions in Ge-Te phase change materials studied by time-resolved X-ray diffraction[J]. Applied Physics Letters, 95, 143118(2009).

    [58] MUIR J A, BEATO V. Phase transformations in the system GeSe- GeTe[J]. Journal of the Less Common Metals, 33, 333-340(1973).

    [59] WIEDEMEIER H, SIEMERS P. The thermal expansion and high temperature transformation of GeSe[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 411, 90-96(1975).

    [60] SIST M, GATTI C, NØRBY P et al. High-temperature crystal structure and chemical bonding in thermoelectric germanium selenide (GeSe)[J]. Chemistry-A European Journal, 23, 6888-6895(2017).

    [61] HUANG Z, MILLER S A, GE B et al. High thermoelectric performance of new rhombohedral phase of GeSe stabilized through alloying with AgSbSe2[J]. Angewandte Chemie International Edition, 129, 14301-14306(2017).

    [64] FAN Z, WANG H, WU Y et al. Thermoelectric high-entropy alloys with low lattice thermal conductivity[J]. RSC Advances, 6, 52164-52170(2016).

    [66] YAN J, LIU F, MA G et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects[J]. Scripta Materialia, 157, 129-134(2018).

    [67] SAKURADA S, SHUTOH N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds[J]. Applied Physics Letters, 86, 082105(2005).

    [68] VOLYKHOV A, YASHINA L, TAMM M et al. Phase equilibria in ternary reciprocal systems based on IV-VI compounds[J]. Inorganic Materials, 45, 968-974(2009).

    [70] EMIN D. Enhanced Seebeck coefficient from carrier-induced vibrational softening[J]. Physical Review B, 59, 6205-6210(1999).

    Tools

    Get Citation

    Copy Citation Text

    Qingyu YANG, Pengfei QIU, Xun SHI, Lidong CHEN. Application of Entropy Engineering in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 347

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Jul. 27, 2020

    Accepted: --

    Published Online: Nov. 24, 2021

    The Author Email: Xun SHI (xshi@mail.sic.ac.cn)

    DOI:10.15541/jim20200417

    Topics