Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0437003(2025)

Memory Unit-Based Multistage Self-Supervised Image Denoising Method

Xiaodong Zhang*, Linghan Zhu, Shaoshu Gao, Xinrui Wang, and Shuo Wang
Author Affiliations
  • Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 257061, Shandong , China
  • show less
    Figures & Tables(10)
    Comparison of loss function calculation methods between existing method and MU-based method. (a) Existing method; (b) MU-based method
    Strcture of multistage self-supervised denoising method based on MU
    Comparison of visualization results while introducing MU in different training stages. (a) without MU; (b) with MU
    Visual comparison results of different methods on SIDD dataset
    Visual comparison results of different methods on DND dataset
    • Table 1. Results of MU ablation experiments

      View table

      Table 1. Results of MU ablation experiments

      Stage 1Stage 2Stage 3PSNR /dB
      BNN36.02
      BNN+MU36.23
      BNN+MUDSN34.91
      BNN+MUDSN+MU34.60
      BNN+MUDSNUNet36.90
      BNN+MUDSNUNet+MU37.30
    • Table 2. Impact of different training stages on denoising performance

      View table

      Table 2. Impact of different training stages on denoising performance

      Stage 1Stage 2Stage 3PSNR /dB
      36.62
      35.21
      37.30
    • Table 3. Comparison of performance for different training strategies

      View table

      Table 3. Comparison of performance for different training strategies

      Training strategyPSNR /dBSSIMTraining time /h
      Joint training37.050.925265
      Multistage training37.300.930121
    • Table 4. Comparison of denoising performances of different algorithms on SIDD and DND datasets

      View table

      Table 4. Comparison of denoising performances of different algorithms on SIDD and DND datasets

      TypeAlgorithmPSNR /dBSSIM
      SIDD datesetDND datesetSIDD datesetDND dateset
      Non-learning basedBM3D725.6534.510.6850.851
      WNNM2425.7834.670.8090.865
      Self-supervisedNoise2Void1827.680.668
      Noise2Self2529.560.808
      NAC2636.200.925
      R2R2735.450.898
      CVF-SID2834.7136.500.9170.924
      AP-BSN2136.9138.090.9310.937
      SASSID2337.0838.180.9280.938
      MM-SSID (proposed)37.3038.520.9300.941
    • Table 5. Comparison of model efficiency for different denoising algorithms

      View table

      Table 5. Comparison of model efficiency for different denoising algorithms

      AlgorithmParameters /106FLOPs /109Time /ms
      Noise2Void187.1873.117.2
      Noise2Self250.5673.115.6
      NAC260.7851.224.9
      R2R270.5673.115.6
      CVF-SID281.19155.738.5
      AP-BSN213.663788.1634.1
      MM-SSID1.0835.013.0
    Tools

    Get Citation

    Copy Citation Text

    Xiaodong Zhang, Linghan Zhu, Shaoshu Gao, Xinrui Wang, Shuo Wang. Memory Unit-Based Multistage Self-Supervised Image Denoising Method[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0437003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: May. 28, 2024

    Accepted: Jul. 9, 2024

    Published Online: Feb. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241376

    CSTR:32186.14.LOP241376

    Topics